Problem 3) Suppose that $\sqrt{N}=m / n$, where both m and n are integers. Assume further that m and n lack common divisors. Write $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{i}^{k_{i}}$ and $n=q_{1}^{\ell_{1}} q_{2}^{\ell_{2}} \cdots q_{j}^{\ell_{j}}$. If N happens to be a perfect square, then \sqrt{N} will be an integer, in which case $j=1, q_{1}=1$, and there is nothing else to say. Otherwise, we have $m^{2}=N n^{2}$, which may be written as follows:

$$
p_{1}^{2 k_{1}} p_{2}^{2 k_{2}} \cdots p_{i}^{2 k_{i}}=N q_{1}^{2 \ell_{1}} q_{2}^{2 \ell_{2}} \cdots q_{j}^{2 \ell_{j}}
$$

It is clear that the above equality cannot be satisfied, no matter what prime factors happen to reside within N. The prime factors of N cannot eliminate any of the q s appearing on the righthand side of the above equation, and unless these factors are cancelled out, the equality cannot hold. We thus have a contradiction, which is rooted in the fact that we began by assuming that \sqrt{N} is rational. The conclusion is that, unless N is a perfect square, \sqrt{N} will be irrational.

