Problem 2) The formula is clearly valid for $N=1$. Suppose it holds for the integer $N \geq 1$. Then, for the sum extending from 1 to $N+1$, we will have

$$
\begin{aligned}
\sum_{n=1}^{N+1} n^{3} & =\sum_{n=1}^{N} n^{3}+(N+1)^{3}=[N(N+1) / 2]^{2}+(N+1)^{3} \\
& =[(N+1) / 2]^{2} \times\left[N^{2}+4(N+1)\right]=[(N+1) / 2]^{2} \times(N+2)^{2} \\
& =[(N+1)(N+2) / 2]^{2}
\end{aligned}
$$

Clearly, the above formula is what one gets from $[N(N+1) / 2]^{2}$ upon substituting $N+1$ for N, which completes our proof by induction.

