Solution to Problem 2) If the pyramid is imagined to have been cut with a plane parallel to the $x y$-plane at a height z, its cross-section at the location of the cut will have the same shape as the base of the pyramid, albeit with an area that is reduced by a factor $(1-z / h)^{2}$. The volume confined between two planes located at z and $z+\mathrm{d} z$ will thus be $A(1-z / h)^{2} \mathrm{~d} z$. The volume of the pyramid is found by integrating this differential volume from $z=0$ to $z=h$. We will have

$$
\begin{equation*}
V=\int_{0}^{h} A(1-z / h)^{2} \mathrm{~d} z=A h \int_{0}^{1}(1-\zeta)^{2} \mathrm{~d} \zeta=-1 /\left.3 A h(1-\zeta)^{3}\right|_{\zeta=0} ^{1}=1 / 3 A h . \tag{1}
\end{equation*}
$$

Note that the shape of the base as well as its location and orientation within the $x y$-plane are totally irrelevant. Moreover, the base can be an infinite-sided polygon, in which case it could acquire a smooth shape such as a circle, an ellipse, etc. The volume of the pyramid (or cone) is always going to be $1 / 3$ the area A of the base times the height h.

An alternative method of solving this problem is to imagine the pyramid sliced into a large number N of thin layers, each having thickness h / N and cross-sectional area $A(n / N)^{2}$, with n ranging from 1 to N. The total volume of the pyramid will then be

$$
\begin{align*}
V=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} A(n / N)^{2}(h / N) & =\lim _{N \rightarrow \infty}\left(A h / N^{3}\right) \sum_{n=1}^{N} n^{2}<\text { see chapter 1, problem 7 } \\
& =\lim _{N \rightarrow \infty}\left(A h / N^{3}\right)[N(N+1)(2 N+1) / 6] \\
& =\lim _{N \rightarrow \infty} A h\left(1+N^{-1}\right)\left(2+N^{-1}\right) / 6=1 / 3 A h . \tag{2}
\end{align*}
$$

b) For a truncated pyramid, the upper limit of the integral in Eq.(1) will be αh. We will have

$$
\begin{align*}
V=\int_{0}^{\alpha h} A(1-z / h)^{2} \mathrm{~d} z & =A h \int_{0}^{\alpha}(1-\zeta)^{2} \mathrm{~d} \zeta=-1 /\left.3 A h(1-\zeta)^{3}\right|_{\zeta=0} ^{\alpha} \\
& =1 / 3 \operatorname{Ah}\left[1-(1-\alpha)^{3}\right]=A \alpha h\left(1-\alpha+\alpha^{2} / 3\right) \tag{3}
\end{align*}
$$

Another way of answering this question is by noting that the volume removed from the top of the pyramid has a base area $(1-\alpha)^{2} A$ and a height $(1-\alpha) h$. Consequently, the removed volume is $1 / 3 \operatorname{Ah}(1-\alpha)^{3}$. The remaining volume is, therefore, given by $1 / 3 \operatorname{Ah}\left[1-(1-\alpha)^{3}\right]$, which is the same as that given by Eq.(3).

