Solution to Problem 2) a) The following figures show several contours of constant u and constant v within the $x y$-plane. (Similar curves can be drawn for negative values of u and v as well.) Note that, within each quadrant of the $x y$-plane, the contours of constant u cover the entire quadrant (except for the y-axis), the contours of constant v also cover the entire quadrant (except for the x-axis), and, aside from the point at the origin, there exists only one point in any given quadrant where a constant- u contour crosses a constant- v contour. The crossing point identifies the unique Cartesian (x, y) coordinates associated with the curvilinear (u, v) coordinates.

b) $u=y / x^{2} \rightarrow \partial u / \partial x=-2 y / x^{3} \quad$ and $\quad \partial u / \partial y=1 / x^{2}$, $v=x / y^{2} \quad \rightarrow \quad \partial v / \partial x=1 / y^{2} \quad$ and $\quad \partial v / \partial y=-2 x / y^{3}$.

Jacobian: $\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}\partial u / \partial x & \partial v / \partial x \\ \partial u / \partial y & \partial v / \partial y\end{array}\right|=\left|\begin{array}{cc}-2 y / x^{3} & 1 / y^{2} \\ 1 / x^{2} & -2 x / y^{3}\end{array}\right|=\frac{3}{x^{2} y^{2}}$.
Similarly,

$$
\begin{aligned}
& \begin{array}{lll}
x=v y^{2}=v u^{2} x^{4} & \rightarrow & x=u^{-2 / 3} v^{-1 / 3}, \\
y=u x^{2}=u v^{2} y^{4} & \rightarrow & y=u^{-1 / 3} v^{-2 / 3} .
\end{array} \\
& \begin{array}{lcc}
\partial x / \partial u=-2 / 3 u^{-5 / 3} v^{-1 / 3} & \text { and } & \partial x / \partial v=-1 / 3 u^{-2 / 3} v^{-4 / 3}, \\
\partial y / \partial u=-1 / 3 u^{-4 / 3} v^{-2 / 3} & \text { and } & \partial y / \partial v=-2 / 3 u^{-1 / 3} v^{-5 / 3} .
\end{array} \\
& \text { Jacobian: } \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\partial x / \partial u & \partial y / \partial u \\
\partial x / \partial v & \partial y / \partial v
\end{array}\right|=\left|\begin{array}{cc}
-2 / 3 u^{-5 / 3} v^{-1 / 3} & -1 / 3 u^{-4 / 3} v^{-2 / 3} \\
-1 / 3 u^{-2 / 3} v^{-4 / 3} & -2 / 3 u^{-1 / 3} v^{-5 / 3}
\end{array}\right|=\frac{1}{3 u^{2} v^{2}} .
\end{aligned}
$$

Considering that $u v=1 /(x y)$, it is readily seen that $\partial(u, v) / \partial(x, y)$ and $\partial(x, y) / \partial(u, v)$ are inverses of each other.
c) In the $x y$-plane, the shaded area is determined as follows:

$$
\text { Area }=\int_{x=0}^{1}\left(\int_{y=x^{2}}^{\sqrt{x}} \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) \mathrm{d} x=\left(\frac{2}{3} x^{3 / 2}-\frac{1}{3} x^{3}\right)_{x=0}^{1}=2 / 3-1 / 3=1 / 3 .
$$

The same area may be computed in the $u v$ coordinate system by recognizing that both u and v range from 1.0 to ∞, and that the relevant Jacobian is $|\partial(x, y) / \partial(u, v)|=1 /\left(3 u^{2} v^{2}\right)$.

$$
\text { Area }=\int_{u=1}^{\infty} \int_{v=1}^{\infty} 1 \cdot\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v=1 / 3 \int_{1}^{\infty} \frac{\mathrm{d} u}{u^{2}} \int_{1}^{\infty} \frac{\mathrm{d} v}{v^{2}}=1 / 3\left(-\frac{1}{u}\right)_{u=1}^{\infty}\left(-\frac{1}{v}\right)_{v=1}^{\infty}=1 / 3 .
$$

