Problem 2) a) True. Suppose $1 / x$ is rational. Then $1 / x=m / n$, where both m and n are integers. Consequently, $x=n / m$ will be a rational, which is a contradiction.
b) True. Suppose \sqrt{x} is rational. Then $\sqrt{x}=m / n$, where both m and n are integers. Consequently, $x=m^{2} / n^{2}$, and since both m^{2} and n^{2} are integers, x turns out to be rational, which contradicts our original assumption. Therefore, \sqrt{x} must be irrational.
c) True. Suppose the sum of a rational number, say, p / q, and an irrational number, say, x, is a rational such as m / n. Here p, q, m, and n are integers. We will have $x+(p / q)=m / n$, which is equivalent to

$$
x=\frac{m}{n}-\frac{p}{q}=\frac{m q-n p}{n q} .
$$

Since the right-hand-side of the above equation is in the form of the ratio of two integer, we conclude that x is rational, which contradicts our original assumption. Therefore, the sum of a rational and an irrational is always going to be irrational.
d) False. Here is a counterexample. Suppose x is an irrational number between 0 and 1. Then, according to part (c) above, $1-x$ will be irrational as well. However, $x+(1-x)=1$ is rational. Consequently, the sum of two irrationals is not necessarily irrational.
e) False. Here is a counterexample. Suppose $x=\sqrt{2}$, an irrational, and $y=1 / \sqrt{2}$, which according to part (a) above, is also irrational. However, $x y=1$, a rational. We conclude that the product of two irrationals is not necessarily an irrational.

