Problem 2) a) **True**. Suppose 1/x is rational. Then 1/x = m/n, where both m and n are integers. Consequently, x = n/m will be a rational, which is a contradiction.

- b) **True**. Suppose \sqrt{x} is rational. Then $\sqrt{x} = m/n$, where both m and n are integers. Consequently, $x = m^2/n^2$, and since both m^2 and n^2 are integers, x turns out to be rational, which contradicts our original assumption. Therefore, \sqrt{x} must be irrational.
- c) **True**. Suppose the sum of a rational number, say, p/q, and an irrational number, say, x, is a rational such as m/n. Here p, q, m, and n are integers. We will have x + (p/q) = m/n, which is equivalent to

$$x = \frac{m}{n} - \frac{p}{q} = \frac{mq - np}{nq}.$$

Since the right-hand-side of the above equation is in the form of the ratio of two integer, we conclude that x is rational, which contradicts our original assumption. Therefore, the sum of a rational and an irrational is always going to be irrational.

- d) False. Here is a counterexample. Suppose x is an irrational number between 0 and 1. Then, according to part (c) above, 1-x will be irrational as well. However, x+(1-x)=1 is rational. Consequently, the sum of two irrationals is not necessarily irrational.
- e) False. Here is a counterexample. Suppose $x = \sqrt{2}$, an irrational, and $y = 1/\sqrt{2}$, which according to part (a) above, is also irrational. However, xy = 1, a rational. We conclude that the product of two irrationals is not necessarily an irrational.