Problem 1) $f(x)=x^{-1} \ln x \quad \rightarrow \quad f^{\prime}(x)=-x^{-2} \ln x+x^{-1}(1 / x)=(1-\ln x) / x^{2}=0$.
The solution to this equation is $\ln x=1$, or $x=e$. To determine if this is a maximum, minimum, or inflection point of the function, we must evaluate the $2^{\text {nd }}$ derivative of $f(x)$ at $x=e$. We find

$$
f^{\prime \prime}(x)=\left[-(1 / x) x^{2}-2 x(1-\ln x)\right] / x^{4}=(2 \ln x-3) / x^{3} \quad \rightarrow \quad f^{\prime \prime}(e)=-1 / e^{3} .
$$

Since the $2^{\text {nd }}$ derivative of $f(x)$ at $x=e$ is negative, the function has a maximum at this point. Noting that $x^{-1} \ln x=0$ at $x=1$, that the function goes to $-\infty$ when $x \rightarrow 0$, peaks at $x=e$, reverses its curvature at $x=e^{3 / 2}$, and goes to zero when $x \rightarrow \infty$, we can plot $f(x)$ as follows:

To integrate $f(x)=x^{-1} \ln x$, we note that x^{-1} is the derivative of $\ln x$; therefore,

$$
\int_{1}^{x_{0}} x^{-1} \ln x \mathrm{~d} x=1 /\left.2 \ln ^{2} x\right|_{x=1} ^{x_{0}}=1 / 2 \ln ^{2}\left(x_{0}\right)
$$

Alternatively, one may use the method of integration by parts to arrive at the same result; that is,

$$
\begin{aligned}
& \int_{1}^{x_{0}} x^{-1} \ln x \mathrm{~d} x=\left.(\ln x)(\ln x)\right|_{x=1} ^{x_{0}}-\int_{1}^{x_{0}}(\ln x)\left(x^{-1}\right) \mathrm{d} x \\
\rightarrow \quad & \int_{1}^{x_{0}} x^{-1} \ln x \mathrm{~d} x+\int_{1}^{x_{0}} x^{-1} \ln x \mathrm{~d} x=\ln ^{2}\left(x_{0}\right) \quad \rightarrow \quad \int_{1}^{x_{0}} x^{-1} \ln x \mathrm{~d} x=1 / 2 \ln ^{2}\left(x_{0}\right) .
\end{aligned}
$$

Note that the area under the positive lobe of the function from $x=1$ to $x_{0} \geq 1$ is equal in magnitude and opposite in sign to the area under the negative lobe from $x=x_{0}^{-1}$ to 1 . The areas under both lobes go to infinity when $x_{0} \rightarrow 0$ (negative lobe) and when $x_{0} \rightarrow \infty$ (positive lobe).

