Opti 503A

**Problem 1**)  $f(x) = x^{-1} \ln x \rightarrow f'(x) = -x^{-2} \ln x + x^{-1}(1/x) = (1 - \ln x)/x^2 = 0.$ The solution to this equation is  $\ln x = 1$ , or x = e. To determine if this is a maximum, minimum,

or inflection point of the function, we must evaluate the  $2^{nd}$  derivative of f(x) at x = e. We find

 $f''(x) = [-(1/x)x^2 - 2x(1 - \ln x)]/x^4 = (2\ln x - 3)/x^3 \rightarrow f''(e) = -1/e^3.$ 

Since the 2<sup>nd</sup> derivative of f(x) at x = e is negative, the function has a maximum at this point. Noting that  $x^{-1} \ln x = 0$  at x = 1, that the function goes to  $-\infty$  when  $x \to 0$ , peaks at x = e, reverses its curvature at  $x = e^{3/2}$ , and goes to zero when  $x \to \infty$ , we can plot f(x) as follows:



To integrate  $f(x) = x^{-1} \ln x$ , we note that  $x^{-1}$  is the derivative of  $\ln x$ ; therefore,

$$\int_{1}^{x_{0}} x^{-1} \ln x \, \mathrm{d}x = \frac{1}{2} \ln^{2} x \Big|_{x=1}^{x_{0}} = \frac{1}{2} \ln^{2}(x_{0}).$$

Alternatively, one may use the method of integration by parts to arrive at the same result; that is,

$$\int_{1}^{x_{0}} x^{-1} \ln x \, dx = (\ln x)(\ln x)|_{x=1}^{x_{0}} - \int_{1}^{x_{0}} (\ln x)(x^{-1}) dx$$
  

$$\rightarrow \quad \int_{1}^{x_{0}} x^{-1} \ln x \, dx + \int_{1}^{x_{0}} x^{-1} \ln x \, dx = \ln^{2}(x_{0}) \quad \rightarrow \quad \int_{1}^{x_{0}} x^{-1} \ln x \, dx = \frac{1}{2} \ln^{2}(x_{0})$$

Note that the area under the positive lobe of the function from x = 1 to  $x_0 \ge 1$  is equal in magnitude and opposite in sign to the area under the negative lobe from  $x = x_0^{-1}$  to 1. The areas under both lobes go to infinity when  $x_0 \to 0$  (negative lobe) and when  $x_0 \to \infty$  (positive lobe).