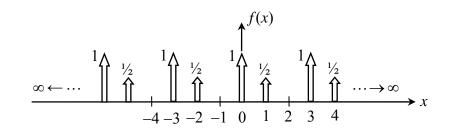

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.


5 pts **Problem 1**) Find the Fourier transforms of the functions f(x) and g(x) shown below.

- 1 pt **Problem 2**) a) Show that the Fourier transform of $\cos(2\pi f_0 x)$ is $\frac{1}{2}[\delta(s-f_0)+\delta(s+f_0)]$.
- 1 pt b) Show that the Fourier transform of $\sin(2\pi f_0 x)$ is $[\delta(s-f_0) \delta(s+f_0)]/(2i)$.
- 2 pts c) Using the result of part (a), find the Fourier transform of $\cos^2(\pi f_0 x)$.
- 2 pts d) Use the differentiation theorem to find the Fourier transform of the derivative of $\cos^2(\pi f_0 x)$. Show that your final result is consistent with the result obtained in part (b).
- 5 pts **Problem 3**) Show that $\int_{-\infty}^{\infty} \frac{\cos x}{\pi^2 4x^2} dx = \frac{1}{2}$. (Note that the integrand does *not* diverge at $x = \pm \pi/2$, as the numerator, $\cos x$, also goes to zero at these points.)

Hint: Split the integral into two separate integrals using the identity $\cos x = \frac{1}{2} [\exp(ix) + \exp(-ix)]$.

5 pts **Problem 4**) Use two different methods to find the Fourier transform of the periodic function f(x) shown below. Confirm that both methods yield the same answer.

4 pts **Problem 5**) Determine an approximate value for the following integral, assuming that the realvalued parameter η is large and positive.

$$I = \int_{-1}^{+1} \exp(-x^2 + i\eta\sqrt{1 - x^2}) dx.$$