Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

5 pts Problem 1) Find the Fourier transforms of the functions $f(x)$ and $g(x)$ shown below.

$1 \mathrm{pt} \quad$ Problem 2) a) Show that the Fourier transform of $\cos \left(2 \pi f_{\mathrm{o}} x\right)$ is $1 / 2\left[\delta\left(s-f_{\mathrm{o}}\right)+\delta\left(s+f_{\mathrm{o}}\right)\right]$.
$1 \mathrm{pt} \quad$ b) Show that the Fourier transform of $\sin \left(2 \pi f_{\mathrm{o}} x\right)$ is $\left[\delta\left(s-f_{\mathrm{o}}\right)-\delta\left(s+f_{\mathrm{o}}\right)\right] /(2 \mathrm{i})$.

2 pts
2 pts

5 pts

5 pts

4 pts
c) Using the result of part (a), find the Fourier transform of $\cos ^{2}\left(\pi f_{0} x\right)$.
d) Use the differentiation theorem to find the Fourier transform of the derivative of $\cos ^{2}\left(\pi f_{0} x\right)$. Show that your final result is consistent with the result obtained in part (b).

Problem 3) Show that $\int_{-\infty}^{\infty} \frac{\cos x}{\pi^{2}-4 x^{2}} \mathrm{~d} x=\frac{1}{2}$. (Note that the integrand does not diverge at $x= \pm \pi / 2$, as the numerator, $\cos x$, also goes to zero at these points.)

Hint: Split the integral into two separate integrals using the identity $\cos x=1 / 2[\exp (i x)+\exp (-i x)]$.
Problem 4) Use two different methods to find the Fourier transform of the periodic function $f(x)$ shown below. Confirm that both methods yield the same answer.

Problem 5) Determine an approximate value for the following integral, assuming that the realvalued parameter η is large and positive.

$$
I=\int_{-1}^{+1} \exp \left(-x^{2}+\mathrm{i} \eta \sqrt{1-x^{2}}\right) \mathrm{d} x .
$$

