7 pts **Problem 1**) Without using a calculator or a computer program, sketch a rough plot of the function $f(x) = x^{-1} \ln x$ versus x for positive values of x. Identify the maxima, minima, and inflection points, if any, of the function. Evaluate $\int_{1}^{x_0} x^{-1} \ln x \, dx$ for arbitrary values of $x_0 \ge 0$.

6 pts **Problem 2**) Use proof by induction to show that $1^3 + 2^3 + 3^3 + \dots + N^3 = [N(N+1)/2]^2$.

Problem 3) a) The figure on the left-hand side shows a right elliptical cone whose base is the ellipse $(x/a)^2 + (y/b)^2 = 1$, and whose apex is located a distance h from the base on the perpendicular line drawn from the center of the ellipse. Consider a thin slice of the cone at elevation $z = n\Delta$, then add up the volumes of all the slices from n = 1 to N, where $N = h/\Delta$ is the total number of such slices. Show that, in the limit when $\Delta \rightarrow 0$, the volume of the cone thus computed approaches the well-known value $V = \pi abh/3$.

Repeat part (a) for a similar geometrical shape whose cross-sectional diameters grow not in proportion to the height z, but (b) in proportion to \sqrt{z} , and (c) in proportion to $z^{3/2}$.

Hint: The area of the ellipse at the base is πab ;

$$1 + 2 + 3 + \dots + N = N(N+1)/2;$$

$$1^{2} + 2^{2} + 3^{2} + \dots + N^{2} = N(N+1)(2N+1)/6;$$

$$1^{3} + 2^{3} + 3^{3} + \dots + N^{3} = [N(N+1)/2]^{2}.$$

6 pts **Problem 4**) Let x and y represent the length and width of a rectangle. Use the method of Lagrange multipliers to determine the values of x and y that maximize the area of the rectangle subject to the constraint that its perimeter is fixed at P.

6 pts **Problem 5**) The Taylor series expansion of $f(x) = (x^2 - 2x + 2)^{-1}$ around the point $x_0 = 0$ is written as $\sum_{n=0}^{\infty} a_n x^n$. Use a recursive method (similar to that used to find the Bernoulli numbers) to determine the first 15 coefficients $a_0, a_1, a_2, \dots, a_{14}$ of the above Taylor series.