Please write your name and ID number on the first page before scanning/photographing the pages.

 Answer all the questions.7 pts
Problem 1) Without using a calculator or a computer program, sketch a rough plot of the function $f(x)=x^{-1} \ln x$ versus x for positive values of x. Identify the maxima, minima, and inflection points, if any, of the function. Evaluate $\int_{1}^{x_{0}} x^{-1} \ln x \mathrm{~d} x$ for arbitrary values of $x_{0} \geq 0$.

6 pts Problem 2) Use proof by induction to show that $1^{3}+2^{3}+3^{3}+\cdots+N^{3}=[N(N+1) / 2]^{2}$.
10 pts Problem 3) a) The figure on the left-hand side shows a right elliptical cone whose base is the ellipse $(x / a)^{2}+(y / b)^{2}=1$, and whose apex is located a distance h from the base on the perpendicular line drawn from the center of the ellipse. Consider a thin slice of the cone at elevation $z=n \Delta$, then add up the volumes of all the slices from $n=1$ to N, where $N=h / \Delta$ is the total number of such slices. Show that, in the limit when $\Delta \rightarrow 0$, the volume of the cone thus computed approaches the well-known value $V=\pi a b h / 3$.

Repeat part (a) for a similar geometrical shape whose cross-sectional diameters grow not in proportion to the height z, but (b) in proportion to \sqrt{z}, and (c) in proportion to $z^{3 / 2}$.

Hint: The area of the ellipse at the base is $\pi a b$;

$$
\begin{aligned}
& 1+2+3+\cdots+N=N(N+1) / 2 ; \\
& 1^{2}+2^{2}+3^{2}+\cdots+N^{2}=N(N+1)(2 N+1) / 6 ; \\
& 1^{3}+2^{3}+3^{3}+\cdots+N^{3}=[N(N+1) / 2]^{2} .
\end{aligned}
$$

6 pts Problem 4) Let x and y represent the length and width of a rectangle. Use the method of Lagrange multipliers to determine the values of x and y that maximize the area of the rectangle subject to the constraint that its perimeter is fixed at P.

6 pts Problem 5) The Taylor series expansion of $f(x)=\left(x^{2}-2 x+2\right)^{-1}$ around the point $x_{0}=0$ is written as $\sum_{n=0}^{\infty} a_{n} x^{n}$. Use a recursive method (similar to that used to find the Bernoulli numbers) to determine the first 15 coefficients $a_{0}, a_{1}, a_{2}, \cdots, a_{14}$ of the above Taylor series.

