Opti 503A

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) The figure shows the cross-sectional profile of a paraboloidal mirror in the *xy*-plane, whose shape is described by the function $y = ax^2$, with *a* being a positive real constant. A ray of light propagating along the unit-vector $\mathbf{R}_1 = -\hat{\mathbf{y}}$ arrives at the point (x_0, y_0) on the surface of the mirror. Also shown in the figure is the unit-vector \mathbf{S} that is tangent to the parabola at the point of incidence. The reflected ray propagates along the unit-vector \mathbf{R}_2 , crossing the axis of the paraboloid at a height y_1 above the mirror's vertex.

- 4 pts a) Write expressions for the unit-vectors S and R_2 in terms of the parameters a, x_0 , y_0 , and y_1 .
- 4 pts b) Considering that \mathbf{R}_1 and \mathbf{R}_2 make equal angles with the tangent vector \mathbf{S} , use the vector identity $\mathbf{v}_1 \cdot \mathbf{v}_2 = |\mathbf{v}_1| |\mathbf{v}_2| \cos \theta$ to write an equation relating the various system parameters.
- 4 pts c) Solve the equation found in part (b) to determine the height y_1 of the reflected ray \mathbf{R}_2 on the axis of the paraboloidal mirror. (You will find that y_1 does *not* depend on the coordinates (x_0, y_0) of incidence. You have thus obtained the location y_1 of the focal point of the mirror as a function of the parameter a, which is related to the curvature of the mirror's surface.)

Problem 2) The figure shows a polygon in the *xy*-plane, whose sides and corners are connected by straight lines to the point z = h on the *z*-axis. The solid object thus formed is a pyramid whose base area is A and whose height is h.

- 5 pts a) Find a formula for the volume V of the pyramid in terms of A and h.
- 5 pts b) How does the above formula for the volume V change if the pyramid is truncated at the top, by a plane that is parallel to the xy-plane and cuts through the pyramid at a height of $z = \alpha h$. Here α is an arbitrary number between 0 and 1.

5 pts **Problem 3**) Show that the Taylor series expansion of $f(x) = (1 + x)e^x$ is given by

$$\sum_{n=0}^{\infty} [(n+1)/n!] x^n.$$

5 pts **Problem 4**) a) Let $S_N^{(m)}$ represent the sum of the m^{th} power of integers from 1 to N, that is, $S_N^{(m)} = \sum_{n=1}^N n^m$. Using the fact that $\int_{x=1}^{N+1} x^{k-1} dx = \sum_{n=1}^N \int_{x=n}^{n+1} x^{k-1} dx$ for any arbitrary integer $k \ge 1$, show that the various $S_N^{(m)}$ satisfy the following recursion relation:

$$\sum_{m=0}^{k-1} \binom{k}{m} S_N^{(m)} = (N+1)^k - 1.$$

3 pts b) Starting with k = 1, then repeating the same procedure for $k = 2, 3, 4, \dots$, find closed form expressions for $S_N^{(0)}, S_N^{(1)}, S_N^{(2)}, S_N^{(3)}, \dots$.