Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) The figure shows the cross-sectional profile of a paraboloidal mirror in the $x y$-plane, whose shape is described by the function $y=a x^{2}$, with a being a positive real constant. A ray of light propagating along the unit-vector $\boldsymbol{R}_{1}=-\widehat{\boldsymbol{y}}$ arrives at the point $\left(x_{0}, y_{0}\right)$ on the surface of the mirror. Also shown in the figure is the unit-vector \boldsymbol{S} that is tangent to the parabola at the point of incidence. The reflected ray propagates along the unit-vector \boldsymbol{R}_{2}, crossing the axis of the paraboloid at a height y_{1} above the mirror's vertex.
4 pts a) Write expressions for the unit-vectors \boldsymbol{S} and \boldsymbol{R}_{2} in terms of the parameters a, x_{0}, y_{0}, and y_{1}.

b) Considering that \boldsymbol{R}_{1} and \boldsymbol{R}_{2} make equal angles with the tangent vector \boldsymbol{S}, use the vector identity $\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}=\left|\boldsymbol{v}_{1}\right|\left|\boldsymbol{v}_{2}\right| \cos \theta$ to write an equation relating the various system parameters.

4 pts
c) Solve the equation found in part (b) to determine the height y_{1} of the reflected ray \boldsymbol{R}_{2} on the axis of the paraboloidal mirror. (You will find that y_{1} does not depend on the coordinates $\left(x_{0}, y_{0}\right)$ of incidence. You have thus obtained the location y_{1} of the focal point of the mirror as a function of the parameter a, which is related to the curvature of the mirror's surface.)

Problem 2) The figure shows a polygon in the $x y$-plane, whose sides and corners are connected by straight lines to the point $z=h$ on the z-axis. The solid object thus formed is a pyramid whose base area is A and whose height is h.

$5 \mathrm{pts} \quad$ a) Find a formula for the volume V of the pyramid in terms of A and h.
5 pts b) How does the above formula for the volume V change if the pyramid is truncated at the top, by a plane that is parallel to the $x y$-plane and cuts through the pyramid at a height of $z=\alpha h$. Here α is an arbitrary number between 0 and 1 .

5 pts Problem 3) Show that the Taylor series expansion of $f(x)=(1+x) e^{x}$ is given by

$$
\sum_{n=0}^{\infty}[(n+1) / n!] x^{n} .
$$

5 pts Problem 4) a) Let $S_{N}^{(m)}$ represent the sum of the $m^{\text {th }}$ power of integers from 1 to N, that is, $S_{N}^{(m)}=\sum_{n=1}^{N} n^{m}$. Using the fact that $\int_{x=1}^{N+1} x^{k-1} \mathrm{~d} x=\sum_{n=1}^{N} \int_{x=n}^{n+1} x^{k-1} \mathrm{~d} x$ for any arbitrary integer $k \geq 1$, show that the various $S_{N}^{(m)}$ satisfy the following recursion relation:

$$
\sum_{m=0}^{k-1}\binom{k}{m} S_{N}^{(m)}=(N+1)^{k}-1
$$

3 pts b) Starting with $k=1$, then repeating the same procedure for $k=2,3,4, \cdots$, find closed form expressions for $S_{N}^{(0)}, S_{N}^{(1)}, S_{N}^{(2)}, S_{N}^{(3)}, \cdots$.

