Opti 503A

Midterm Exam (2/26/2018)
Time: $\mathbf{7 5}$ minutes

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

b) Use the result of part (a) to prove the following identity for any triangle:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} .
$$

Problem 2) A good way to treat monochromatic geometric-optical rays is by assigning a complex amplitude $A=|A| \exp (\mathrm{i} \varphi)$ to each ray, where $|A|$ and φ are the magnitude and phase of the ray, respectively. (Monochromatic means "single-color," which refers to the fact that the ray, when propagating in vacuum, is associated with a single wavelength λ_{0}.) The refractive indices of optical materials may also be represented by complex numbers, say, $n=n^{\prime}+\mathrm{i} n^{\prime \prime}$, where n^{\prime} is commonly referred to as the refractive index, and $n^{\prime \prime}$ as the absorption coefficient. (In general, n ' and n " are lumped together as a complex number n, referred to as the "complex" refractive index.)

When a ray propagates a distance d within a homogeneous medium of (complex) refractive index n, its (complex) amplitude A gets multiplied by $\eta=\exp \left(\mathrm{i} 2 \pi n d / \lambda_{0}\right)$. At the interface between two media, say, medium 1 and medium 2 , the ray is partially reflected and partially transmitted. Denoting the (complex) reflection coefficient by ρ_{12} and the (complex) transmission coefficient by τ_{12}, the incident ray amplitude A (arriving from the incidence medium 1 at the interface with medium 2), splits into a reflected ray $\rho_{12} A$ and a transmitted ray $\tau_{12} A$.
20 pts a) With reference to the figure, let a ray of amplitude A and vacuum wavelength λ_{0} arrive from the incidence medium of refractive index n_{1} at a thin layer of thickness d and refractive index n_{2}. The layer is coated atop a homogeneous, semiinfinite medium of refractive index n_{3}. In terms of the parameters $\rho_{12}, \tau_{12}, \rho_{21}, \tau_{21}, \rho_{23}, \tau_{23}$, and the propagation factor $\eta=\exp \left(\mathrm{i} 2 \pi n_{2} d / \lambda_{0}\right)$, write an infinite series for the total reflected amplitude at the interface between media 1 and 2 , and also another infinite series for the transmitted amplitude at the interface between media 2 and 3.

$15 \mathrm{pts} \quad$ b) Use the geometric series formula $\sum_{k=0}^{\infty} x^{k}=1 /(1-x)$, where $|x|<1$, to find a closed form for the overall reflection and transmission coefficients of the thin layer depicted in the figure.

Hint: You are not being asked to use the actual formulas for the Fresnel reflection and transmission coefficients at normal incidence, namely, $\rho_{i j}=\left(n_{i}-n_{j}\right) /\left(n_{i}+n_{j}\right)$ and $\tau_{i j}=2 n_{i} /\left(n_{i}+n_{j}\right)$. Your answers should be expressed in terms of $\rho_{12}, \tau_{12}, \rho_{21}, \tau_{21}, \rho_{23}, \tau_{23}$, and η.

20 pts Problem 3) Consider a straight line-segment of length L. Take out the middle third of the line, then replace it with two equal-length segments at a 60° angle, as shown in the figure. The total length of the line after this first step will be $4 L / 3$. Repeat the process with each of the four linesegments, so that the overall length of the (broken) line after the second step becomes $16 L / 9$. Find a formula for the overall length of the broken line after n repeats of the same procedure.

20 pts
Problem 4) A flat, closed curve in the $x y$-plane is defined by its distance $r(\theta)$ from a central point, where $0 \leq \theta \leq 2 \pi$ is the angular position on the curve, measured relative to some arbitrary reference direction. The area enclosed by the curve is $A=1 / 2 \int_{0}^{2 \pi} r^{2}(\theta) \mathrm{d} \theta$, while the perimeter of the closed curve is $P=\int_{0}^{2 \pi} r(\theta) \mathrm{d} \theta$. Use the method of Lagrange multipliers to find the particular function $r(\theta)$ that maximizes the area A of
 the closed curve for a given value of its perimeter $P=P_{0}$.

Hint: You may want to work with a discrete version of $r(\theta)$, where the radii $r_{1}, r_{2}, r_{3}, \cdots, r_{n}, \cdots, r_{N}$ evenly divide the available range of θ, creating an angular separation of $\Delta \theta$ between adjacent radii. The area and the perimeter of the closed curve may then be approximated as $A=1 / 2 \sum r_{n}^{2} \Delta \theta$ and $P=\sum r_{n} \Delta \theta$.

