Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) A ray of light travels from an underwater object located at $(x_1, y_1, z_1) = (\ell, -h, 0)$ to an observer's eye at $(x_0, y_0, z_0) = (0, d, 0)$, as shown. The refractive index of the air, where the observer is located, is n_0 , while that of the water is n_1 . (The speed of light in a medium of refractive index *n* is given by v = c/n, where *c* is the speed of light in vacuum.)

15 pts a) Locate the *x*-coordinate of the light ray where it emerges from the water in such a way as to *minimize* the time of travel from the object to the observer's eye.

Note: The answer is a root of a quartic (i.e., 4th degree) polynomial equation. Although such equations are generally solvable, you are being asked here only to find the equation — not its solution.

10 pts b) Use the result obtained in part (a) to verify Snell's law of refraction, namely, $n_1 \sin \theta_1 = n_0 \sin \theta_0$.

Problem 2) A transformation from the Cartesian xy coordinate system to the curvilinear uv system is defined by the equations $u = y/x^2$ and $v = x/y^2$.

- 5 pts a) Within the *xy*-plane, plot a set of curves that show the contours of constant u, and another set that shows the contours of constant v. Aside from the singularity of the *x*-axis, where y = 0, and the singularity of the *y*-axis, where x = 0, show that the transformation uniquely associates every point (x, y) with a point (u, v), and vice-versa.
- 10 pts b) Determine the Jacobian of the transformation from xy to uv, and also the Jacobian of the inverse transformation from uv to xy. Confirm that $\partial(x,y)/\partial(u,v)$ is the inverse of $\partial(u,v)/\partial(x,y)$.

10 pts c) Find the area of the region of the *xy*-plane that is bounded by the curves $y = x^2$ and $y = \sqrt{x}$. (This is the shaded area in the above figure.) Evaluate the relevant integral in both *xy* and *uv* coordinate systems, and confirm that the results are identical. 25 pts **Problem 3**) A cylindrical hole of radius r and height h is perforated within a solid sphere of radius R. Use the method of Lagrange multipliers to *maximize* the volume of the cylinder subject to the constraint that its round edges touch the surface of the sphere.

Problem 4) The function $f(x) = \frac{x}{\ln(x+1)}$ is defined for the real variable x where $x \ge -1$.

- 10 pts a) Use the Taylor series expansion of $\ln(x + 1)$ around the point x = 0 to estimate the values of f(x) at x = 0 and x = -1.
- 10 pts b) Find a recursion relation for the coefficients a_n of the Taylor series expansion of f(x) around x = 0, namely, $f(x) = \sum_{n=0}^{\infty} a_n x^n$. What are the numerical values of a_0 , a_1 , a_2 , a_3 and a_4 ?
- 5 pts c) Plot the general shape of the function f(x) versus x for $x \ge -1$. Identify some of the important/interesting features of the curve.

Hint: The method needed in part (b) is similar to that used for obtaining the Bernoulli numbers.