Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) A ray of light travels from an underwater object located at $\left(x_{1}, y_{1}, z_{1}\right)=(\ell,-h, 0)$ to an observer's eye at $\left(x_{0}, y_{0}, z_{0}\right)=(0, d, 0)$, as shown. The refractive index of the air, where the observer is located, is n_{0}, while that of the water is n_{1}. (The speed of light in a medium of refractive index n is given by $v=c / n$, where c is the speed of light in vacuum.)
a) Locate the x-coordinate of the light ray where it emerges from the water in such a way as to minimize the time of travel from the object to the observer's eye.
Note: The answer is a root of a quartic (i.e., $4^{\text {th }}$ degree) polynomial equation. Although such equations are generally solvable, you are being asked here only to find the equation - not its solution.
b) Use the result obtained in part (a) to verify Snell's law of refraction,
 namely, $n_{1} \sin \theta_{1}=n_{0} \sin \theta_{0}$.

Problem 2) A transformation from the Cartesian $x y$ coordinate system to the curvilinear $u v$ system is defined by the equations $u=y / x^{2}$ and $v=x / y^{2}$.
$5 \mathrm{pts} \quad$ a) Within the $x y$-plane, plot a set of curves that show the contours of constant u, and another set that shows the contours of constant v. Aside from the singularity of the x-axis, where $y=0$, and the singularity of the y-axis, where $x=0$, show that the transformation uniquely associates every point (x, y) with a point (u, v), and vice-versa.
10 pts
b) Determine the Jacobian of the transformation from $x y$ to $u v$, and also the Jacobian of the inverse transformation from $u v$ to $x y$. Confirm that $\partial(x, y) / \partial(u, v)$ is the inverse of $\partial(u, v) / \partial(x, y)$.

10 pts c) Find the area of the region of the $x y$-plane that is bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$. (This is the shaded area in the above figure.) Evaluate the relevant integral in both $x y$ and $u v$ coordinate systems, and confirm that the results are identical.

Problem 3) A cylindrical hole of radius r and height h is perforated within a solid sphere of radius R. Use the method of Lagrange multipliers to maximize the volume of the cylinder subject to the constraint that its round edges touch the surface of the sphere.

Problem 4) The function $f(x)=\frac{x}{\ln (x+1)}$ is defined for the real variable x where $x \geq-1$.
10 pts a) Use the Taylor series expansion of $\ln (x+1)$ around the point $x=0$ to estimate the values of $f(x)$ at $x=0$ and $x=-1$.
b) Find a recursion relation for the coefficients a_{n} of the Taylor series expansion of $f(x)$ around $x=0$, namely, $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. What are the numerical values of $a_{0}, a_{1}, a_{2}, a_{3}$ and a_{4} ?
$5 \mathrm{pts} \quad$ c) Plot the general shape of the function $f(x)$ versus x for $x \geq-1$. Identify some of the important/interesting features of the curve.

Hint: The method needed in part (b) is similar to that used for obtaining the Bernoulli numbers.

