Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

15 pts Problem 1) While $\left(a^{b}\right)^{c}=a^{b c}$, the standard interpretation of $a^{b^{c}}$ is $a^{\left(b^{c}\right)}$. Given this interpretation, use the chain rule of differentiation to find the derivative $f^{\prime}(x)$ of the function $f(x)=e^{e^{e x}}=\exp \{\exp [\exp (x)]\}$.

Problem 2) Which of the following statements are true and which are false? You must provide a brief proof or a counterexample in each case.

4 pts a) If x is irrational, then its inverse, $1 / x$, is also irrational.
4 pts b) If x is irrational, then its square root, \sqrt{x}, is also irrational.
4 pts c) The sum of a rational number and an irrational number is irrational.
4 pts d) The sum of two irrational numbers is irrational.
4 pts e) The product of two irrational numbers is irrational.
15 pts Problem 3) According to the fundamental theorem of arithmetic, any positive integer greater than 1 is either a prime number or can be written as the product of prime numbers in a unique way. For example, $360=2 \times 2 \times 2 \times 3 \times 3 \times 5=2^{3} \times 3^{2} \times 5$. Using this fundamental theorem, prove that, given any positive integer N, its square root \sqrt{N} is either an integer or an irrational number. In other words, unless N happens to be a perfect square, its square root is always going to be irrational.

15 pts Problem 4) Find the value of the following (infinite) series:

$$
S=\frac{1}{1 \times 5}-\frac{1}{2 \times 6}+\frac{1}{3 \times 7}-\frac{1}{4 \times 8}+\cdots-\frac{(-1)^{n}}{n \times(n+4)}+\cdots
$$

15 pts Problem 5) Let $A D$ be the bisector of the angle A of the $A B C$ triangle. Show that the ratio $\overline{B D}: \overline{D C}$ is the same as the ratio $\overline{A B}: \overline{A C}$.

Hint: You may want to draw from D a line parallel to $A B$ and another line parallel to $A C$.

20 pts Problem 6) Plot the general behavior of the function $f(x)=x^{x}$ for all real values of x ranging from $-\infty$ to ∞. Identify the point(s) where $f(x)$ has a local maximum or minimum, and pay particular attention to the behavior of the function in the vicinity of $x=0$.
Hint: For $x<0$, you may use the identity $\ln x=\ln |x|+\mathrm{i} \pi$.

