Please write your name and ID number on all the pages, then staple them together. Answer all the questions.
c) Use the method of Lagrange multipliers to minimize the surface area S subject to the constraint of a fixed volume $V=V_{0}$.
Problem 2) A paper cup has the shape of a hollow, right-circular cone, with height h, base radius ρ, and cone semi-angle θ, as shown. Clearly, $\rho=h \tan \theta$.
a) Determine the volume V of the cup as a function of h and θ.
b) Determine the surface area S of the cup (i.e., area of the flat sheet of paper used to make the cup) as a function of h and θ.

Problem 3) From an arbitrary point O outside a circle of radius R centered at C, a straight-line $O A B$ is drawn such that it crosses the circle at points A and B, as shown.
a) Show that the product $\overline{O A} \cdot \overline{O B}$ of the line-segments is the same for all straight lines drawn from O that cross the circle.
b) Show that $\overline{O A} \cdot \overline{O B}=\overline{O C}^{2}-R^{2}$, where $\overline{O C}$ is the length of the straight-line connecting O to C.
c) Draw a tangent $O D$ from the external point O to the circle, and verify that $\overline{O D} \cdot \overline{O D}=\overline{O C}^{2}-R^{2}$.

Hint: Use the properties of similar triangles.
Problem 4) The hyperbolic sine and cosine functions are defined as follows:

$$
\begin{aligned}
& \sinh (x)=1 / 2[\exp (x)-\exp (-x)] \\
& \cosh (x)=1 / 2[\exp (x)+\exp (-x)]
\end{aligned}
$$

a) Find the Taylor series expansions of $\sinh (x)$ and $\cosh (x)$ around the point $x=0$.
b) Show that, in general, the Taylor series expansion of an even function of x around $x=0$ contains only even powers of x, whereas that of an odd function contains only odd powers.

4 pts
c) Considering the symmetry of the function $\tanh (x)=\sinh (x) / \cosh (x)$, write the general form of its Taylor series expansion around $x=0$.
Note: At this point you are not being asked to determine the coefficients of the Taylor series, only the general form of the series based on the oddness or evenness of the function.

6 pts d) Use the results obtained in parts (a) and (c) to find a recursion relation for the coefficients of the Taylor series of $\tanh (x)$, so that each coefficient a_{n} can be derived from the preceding coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$.

20 pts Problem 5) Let $f(Z)=p(x, y)+\mathrm{i} q(x, y)$ and $g(Z)=r(x, y)+\mathrm{i} s(x, y)$ be complex functions of the complex variable $Z=x+\mathrm{i} y$. Both functions are defined at $Z=Z_{0}$ and are differentiable at that point. Show that the function $h(Z)=f(Z) g(Z)$ is also differentiable at $Z=Z_{0}$ by confirming that $h(Z)$ satisfies the Cauchy-Riemann conditions.

