Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

4 pts

4 pts

4 pts

4 pts
4 pts
20 pts
Problem 2) A circle of radius R is centered at the point O. The points A, B, and C are chosen arbitrarily on the perimeter of the circle, and the angles $\widehat{A B C}$ and $\widehat{A O C}$ are formed, as shown in the figure. Show that, in general, $\widehat{A B C}=1 / 2 \widehat{A O C}$.

Hint: Draw the diameter of the circle that goes through the point B.

Problem 3) The Gamma function $\Gamma(x)$ is defined for positive values of x as follows:

$$
\Gamma(x)=\int_{0}^{\infty} y^{x-1} e^{-y} d y ; \quad x>0
$$

3 pts

a) Show that $\Gamma(1)=1$.
b) Show that $\Gamma(2)=1$.

5 pts
c) Use the method of integration by parts to show that $\Gamma(x)=(x-1) \Gamma(x-1)$.

3 pts d) Using the results obtained in parts (a)-(c), argue that $\Gamma(n)=(n-1)!$.
3 pts
e) What is the value of $\Gamma(1 / 2)$?

3 pts f) What is the value of $\Gamma(n+1 / 2)$, where $n \geq 1$ is an integer?
20 pts Problem 4) The outcome of an experiment is a random integer between 1 and N, each outcome having a probability $p_{n} \geq 0$. The Shannon entropy H of such an experiment is defined as

$$
H\left(p_{1}, p_{2}, \ldots, p_{N}\right)=-\sum_{n=1}^{N} p_{n} \ln \left(p_{n}\right)
$$

Using the method of Lagrange multipliers, maximize the above entropy subject to the constraint that the sum of the probabilities must be equal to unity, that is, $\sum_{n=1}^{N} p_{n}=1$.

20 pts Problem 5) Assuming z_{1} and z_{2} are arbitrary complex numbers, explain how $z_{1}^{z_{2}}$ is calculated.

