Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

- 4 pts **Problem 1**) a) Plot the function $\ln(1 + x)$, which is defined over the semi-infinite interval x > -1. Find the Taylor-series expansion of the function around the point $x_0 = 0$.
- 4 pts b) Plot the function $\ln(1 x)$, which is defined over the semi-infinite interval x < +1. Find the Taylor-series expansion of the function around $x_0 = 0$.
- 4 pts c) Plot the function $\ln\left(\frac{1+x}{1-x}\right)$, which is defined over the interval -1 < x < +1. Write the Taylor-series expansion of the function around $x_0 = 0$.

4 pts d) Using the result of part (c) and setting $x = \frac{1}{2}$, find an infinite series that converges to ln 3.

- 4 pts e) Using the result of part (c) and setting $x = \frac{1}{3}$, find an infinite series that converges to ln 2.
- 20 pts **Problem 2**) A circle of radius *R* is centered at the point *O*. The points *A*, *B*, and *C* are chosen arbitrarily on the perimeter of the circle, and the angles \widehat{ABC} and \widehat{AOC} are formed, as shown in the figure. Show that, in general, $\widehat{ABC} = \frac{1}{2}\widehat{AOC}$.

Hint: Draw the diameter of the circle that goes through the point *B*.

Problem 3) The Gamma function $\Gamma(x)$ is defined for positive values of x as follows:

$$\Gamma(x) = \int_0^\infty y^{x-1} e^{-y} dy;$$
 $x > 0$

- 3 pts a) Show that $\Gamma(1) = 1$.
- 3 pts b) Show that $\Gamma(2) = 1$.
- 5 pts c) Use the method of integration by parts to show that $\Gamma(x) = (x 1)\Gamma(x 1)$.
- 3 pts d) Using the results obtained in parts (a)–(c), argue that $\Gamma(n) = (n-1)!$.
- 3 pts e) What is the value of $\Gamma(\frac{1}{2})$?
- 3 pts f) What is the value of $\Gamma(n + \frac{1}{2})$, where $n \ge 1$ is an integer?
- 20 pts **Problem 4**) The outcome of an experiment is a random integer between 1 and *N*, each outcome having a probability $p_n \ge 0$. The Shannon entropy *H* of such an experiment is defined as

$$H(p_1, p_2, ..., p_N) = -\sum_{n=1}^N p_n \ln(p_n).$$

Using the method of Lagrange multipliers, maximize the above entropy subject to the constraint that the sum of the probabilities must be equal to unity, that is, $\sum_{n=1}^{N} p_n = 1$.

20 pts **Problem 5**) Assuming z_1 and z_2 are arbitrary complex numbers, explain how $z_1^{z_2}$ is calculated.