Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

5 pts Problem 1) Show that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{(n+1)^{2}}=\frac{\pi^{2}}{12}-\ln 2$.
Hint: Use the fact that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$ and also $\ln (2)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
5 pts Problem 2) Show that $\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}$, where $|x|<1$.

5 pts Problem 3) In a right triangle $A B C$, the median $B B^{\prime}$ splits the hypotenuse $A C$ into equal halves, that is, $A B^{\prime}=C B^{\prime}$. Show that the length of this median is half the length of the hypotenuse, that is $B B^{\prime}=1 / 2 A C$.

5 pts Problem 4) A house in the shape of a cuboid is to be built on a flat piece of land, as shown. The volume of the house $V=x y z$ is desired to be some constant value, V_{0}. However, the exposed surface area (that is, the exterior walls plus the roof) should be minimized. Use the method of Lagrange multipliers to determine the optimal dimensions of the house in terms of its desired volume V_{0}.

Problem 5) Use the Cauchy-Riemann conditions to determine the domain of analyticity of each of the following functions:

2 pts
a) $f_{1}(z)=\frac{1}{z-z_{0}}$;

3 pts
b) $f_{2}(z)=\exp \left(z^{2}\right)$.

