Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

4 pts Problem 1) Show that $\sum_{n=1}^{\infty} \frac{1}{n(2 n-1)(2 n+1)}=2 \ln 2-1$.

4 pts
Problem 2) Riemann's zeta function is defined as $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, where $s>1$. With the aid of the Bernoulli numbers, it can be shown that $\zeta(4)=\frac{\pi^{4}}{90}$. Show that $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}=\frac{\pi^{4}}{96}$.

4 pts Problem 3) For a cylindrical can of radius r and height h, whose volume $V(r, h)=\pi r^{2} h$ is fixed at V_{0}, use the method of Lagrange multipliers to determine the minimum surface area $S(r, h)=2 \pi r^{2}+2 \pi r h$.

4 pts

4 pts

Problem 4) Use the Cauchy-Riemann conditions to determine if and where the function $f(z)=f(x+\mathrm{i} y)=(x-y)^{2}+2 \mathrm{i}(x+y)$ is differentiable. What is the region, if any, within which $f(z)$ is analytic?

Problem 5) The complex function $f(z)=u(r, \theta)+\mathrm{i} v(r, \theta)$ is defined in a proper region within the complex-plane $z=r \exp (\mathrm{i} \theta)$.
a) Derive the Cauchy-Riemann conditions in terms of the partial derivatives of $u(r, \theta)$ and $v(r, \theta)$ with respect to the polar coordinates r and θ.
b) Use the result in part (a) to show that the function $f(z)=z^{1 / 2}$ is analytic everywhere in the complex-plane except on a branch-cut.
c) Identify an appropriate branch-cut for the function $f(z)=z^{1 / 2}$.

Problem 6) Use residue calculus to show that

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{2 a b(a+b)} ; \quad a>0, \quad b>0 .
$$

