Please write your name and ID number on the first page before scanning/photographing the pages.
Answer all the questions.
Problem 1) An integral representation of Bessel functions of the first kind, integer order n, is

$$
J_{n}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{\mathrm{i}(z \sin \theta-n \theta)} \mathrm{d} \theta, \quad(n=0,1,2,3, \cdots), \quad z=\text { arbitrary complex number. }
$$

Use this representation to prove the following functional relations among these Bessel functions:
a) $\quad z J_{n-1}(z)+z J_{n+1}(z)=2 n J_{n}(z)$.
b) $\quad J_{n-1}(z)-J_{n+1}(z)=2 \frac{\mathrm{~d}}{\mathrm{~d} z} J_{n}(z)$.

Problem 2) The function $f(z)=z^{\lambda}$, where $\lambda=\lambda^{\prime}+\mathrm{i} \lambda^{\prime \prime}$ is an arbitrary complex constant, is defined over the complex z-plane. If the real part λ^{\prime} of λ happens to be positive or zero, then $f(z)=0$ at $z=0$. In contrast, when λ^{\prime} is negative, $f(z) \rightarrow \infty$ as $z \rightarrow 0$; in this case the value of the function at $z=0$ is not specified, and $f(z)$ is said to have a singularity at the origin (i.e., at $z=0$). Writing $z=|z| e^{i \varphi}$ and $f(z)=z^{\lambda}=e^{\lambda \ln z}=\exp \left[\left(\lambda^{\prime}+\mathrm{i} \lambda^{\prime \prime}\right)(\ln |z|+\mathrm{i} \varphi)\right]$, it is evident that a branch-cut is needed to confine the phase angle φ to within a 2π interval-or else every time that φ is incremented by 2π, the function $f(z)$ will acquire a different value. (The only situation in which a branch-cut is not needed occurs when $\lambda^{\prime \prime}=0$ and λ^{\prime} is an integer.) In this problem, we choose to confine the phase angle φ between 0 and 2π (that is, $0 \leq \varphi<2 \pi$), so that the positive real axis
 serves as the branch-cut, as can be inferred from the figure.
a) Write expressions for the function $f(z)$ in terms of the various parameters (i.e., $\varepsilon, R, \varphi, \lambda$, etc.) when z is located on the large circle of radius R, or on the small circle of radius ε, or on the straight-line-segment that lies immediately above (or immediately below) the real axis between $x=\varepsilon$ and $x=R$.
b) Evaluate the counterclockwise integral of $f(z)$ around the circle of radius R centered at $z=0$ in the complex z-plane; that is, find $\oint_{\text {circle }} f(z) \mathrm{d} z$.
c) Evaluate the clockwise integral of $f(z)$ around the circle of radius ε centered at $z=0$. Similarly, evaluate the integral of $f(z)$ along the two straight-line-segments that lie immediately above and immediately below the real axis.
d) In light of the fact that $f(z)$ is analytic throughout the entire region within the closed contour depicted in the figure, use the results obtained in parts (b) and (c) to confirm the validity of the Cauchy-Goursat theorem. (In other words, show that the closed-loop integral is zero.)

Problem 3) The function $f(x)$ consists of $2 N+1$ identical rectangular pulses of width α and height α^{-1}, located at regular intervals of p along the x-axis, as shown. In the limit when $\alpha \rightarrow 0$ and $N \rightarrow \infty$, this function approaches the normalized comb function $p^{-1} \operatorname{comb}(x / p)$. The goal of the present problem is to demonstrate the validity of Parseval's theorem for the comb function, namely, that the area under the square of the function, $|f(x)|^{2}$, equals the area under the square of its Fourier transform,
 $|F(s)|^{2}$ in the limit when $\alpha \rightarrow 0$ and $N \rightarrow \infty$. This can be achieved in several steps, as follows:
3 pts a) In terms of the parameters N, p, and α, and the special functions $\operatorname{rect}(x)$ and $\operatorname{comb}(x)$, write an expression for the function $f(x)$ shown in the figure.

3 pts b) Find the area under the square of the function; that is, $\int_{-\infty}^{\infty}|f(x)|^{2} \mathrm{~d} x$.
3 pts c) Find the Fourier transform $F(s)$ of $f(x)$ in terms of the parameters N, p, α, and the special function $\operatorname{sinc}(s)$, which is defined as $\sin (\pi s) /(\pi s)$.
d) Evaluate the area under the square of $F(s)$, namely, $\int_{-\infty}^{\infty}|F(s)|^{2} \mathrm{~d} s$. (Ignore the overlap between a $\operatorname{sinc}^{2}(s)$ function and the tails of its neighboring $\operatorname{sinc}^{2}(s)$ functions; for sufficiently large N, these functions are fairly narrow and relatively far apart from each other.)
e) Show that, in the limit when $\alpha \rightarrow 0$ and $N \rightarrow \infty$, the area obtained in part (d) agrees with that obtained in part (b).

Hint: You may invoke the various theorems of the Fourier transform theory, such as the convolution theorem, multiplication theorem, and scaling theorem. Also feel free to use the fact that $\operatorname{sinc}(s)$ is the Fourier transform of $\operatorname{rect}(x)$, and that $\int_{-\infty}^{\infty} \operatorname{sinc}^{2}(s) \mathrm{d} s=1$.

10 pts Problem 4) Use the Cauchy-Goursat theorem of complex analysis (along with other complexplane techniques) to prove the following identity:

$$
\int_{-\infty}^{\infty} \frac{x}{a^{2} e^{x}+b^{2} e^{-x}} \mathrm{~d} x=\frac{\pi \ln (b / a)}{2 a b}, \quad a b>0 .
$$

Hint: Consider using the integration contour shown below.

