Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

15 pts
Problem 1) Shown below are plots of $f(x)=1 / \cosh (\pi x)$ and its Fourier transform $F(s)=$ $1 / \cosh (\pi s)$. Using this information in conjunction with some of the Fourier transform theorems, show that the Fourier transform of $g(x)=\delta(x)$ is $G(s)=1$. Specify the particular theorems as well as other pieces of information that you rely upon in each step of your demonstration.

15 pts
Problem 2) The following second-order, linear, ordinary differential equation, in which $n \geq 0$ is an integer and α is an arbitrary parameter, is known as the Laguerre equation:

$$
x f^{\prime \prime}(x)+(1+\alpha-x) f^{\prime}(x)+n f(x)=0
$$

Use the method of Frobenius to find one of the two linearly independent solutions of Laguerre's equation.
Hint: To avoid confusing the parameter n with the summation dummy, assume $f(x)=x^{s} \sum_{m=0}^{\infty} a_{m} x^{m}$. Also, assuming $\alpha \geq 0$ will simplify the derivation.

Problem 3) In this problem, you are asked to derive in two different ways the Fourier transform of the Sign function, namely, $\operatorname{sign}(x)=x /|x|$. The first method, the subject of part (a), is based on a knowledge of the transform of the unit-step function. In part (b), you will start with the function $f(x)=\tanh (\pi x)$, which resembles a smooth version of $\operatorname{sign}(x)$, derive its Fourier transform by complex-plane techniques, then use the fact that $\operatorname{sign}(x)=\lim _{\alpha \rightarrow 0} \tanh (\pi x / \alpha)$ to arrive at the Fourier transform of $\operatorname{sign}(x)$.
$5 \mathrm{pts} \quad$ a) Use the Fourier transform of the Step function, namely, $\mathcal{F}\{\operatorname{step}(x)\}=1 / 2 \delta(s)-\mathrm{i} /(2 \pi s)$, in conjunction with some of the Fourier transform theorems, to determine the Fourier transform of $\operatorname{sign}(x)$. In each step of your derivation, identify the specific property or theorem that is being relied upon.
b) Find $\mathcal{F}\{\tanh (\pi x)\}=\int_{-\infty}^{\infty} \tanh (\pi x) e^{-\mathrm{i} 2 \pi s x} \mathrm{~d} x$ using Cauchy's theorem and the complexplane contour of integration shown on the next page. In the diagram, the height of the contour, $N \geq 1$, is an arbitrary integer. You must first argue that, in the limit when $L \rightarrow \infty$, the contribution to the loop integral by the vertical legs of the contour is negligible. You will then identify the poles $z_{1}, z_{2}, z_{3}, \cdots, z_{N}$ of the integrand, and evaluate the residues at these poles. In the final step, you will relate the Fourier transform of $\tanh (\pi x)$ to the sum of the residues at the N poles contained within the closed loop. If you do everything right, you will find that $\mathcal{F}\{\tanh (\pi x)\}=-\mathrm{i} / \sinh (\pi s)$, independently of the value of N.

5 pts c) Let $\alpha>0$ be an arbitrary real number. Explain why, in the limit when $\alpha \rightarrow 0$, the scaled function $\tanh (\pi x / \alpha)$ approaches $\operatorname{sign}(x)$. Use the scaling theorem of Fourier transformation to find the transform of $\tanh (\pi x / \alpha)$, then show that, in the limit when $\alpha \rightarrow 0$, this Fourier transform approaches the same function that you found for $\mathcal{F}\{\operatorname{sign}(x)\}$ in part (a).

