Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

10 pts
Problem 1) a) Invoking the Cauchy-Riemann conditions, demonstrate that $f(z)=\exp \left(-z^{2}\right)$ is analytic throughout the entire complex z-plane.
b) Find the derivative $f^{\prime}(z)$ of $f(z)$ at the arbitrarily chosen point $z=z_{0}$.

Problem 2) The function $f(x)$ equals 1.0 when $1 \leq x \leq 3$, and 0.0 otherwise, as shown.

5 pts a) Find the Fourier transform $F(s)$ of $f(x)$ by direct integration.
5 pts b) Express $f(x)$ in terms of the elementary function rect (x).
5 pts c) Use the shift and scaling theorems of the Fourier transform theory to determine $F(s)$ for the function obtained in part (b). Confirm that your result agrees with that obtained in part (a).

Problem 3) The cross-correlation between the functions $f(x)$ and $g(x)$ is defined as follows:

$$
f(x) \otimes g(x)=\int_{-\infty}^{\infty} f\left(x^{\prime}\right) g\left(x^{\prime}-x\right) \mathrm{d} x^{\prime}
$$

5 pts a) In what way does cross-correlation differ from the convolution operation?
5 pts b) Denoting the Fourier transforms of $f(x)$ and $g(x)$ by $F(s)$ and $G(s)$, respectively, show that the Fourier transform of the cross-correlation function is given by

$$
\mathcal{F}\{f(x) \otimes g(x)\}=F(s) G(-s)
$$

10 pts Problem 4) Use the method of Fourier transformation to solve the following first-order linear ordinary differential equation with constant coefficients:

$$
g^{\prime}(x)+g(x)=\operatorname{rect}(x) \cos \left(2 \pi s_{0} x\right)
$$

Note that the excitation function appearing on the right-hand side of the above equation has a constant positive frequency s_{0}, and that the excitation is limited to the range $-1 / 2 \leq x \leq 1 / 2$. Your solution for $g(x)$ must cover the entire range of x from $-\infty$ to ∞.

Hint: $\cos \left(2 \pi s_{0} x\right)=\left[\exp \left(\mathrm{i} 2 \pi s_{0} x\right)+\exp \left(-\mathrm{i} 2 \pi s_{0} x\right)\right] / 2$ and $\sin \left(2 \pi s_{0} x\right)=\left[\exp \left(\mathrm{i} 2 \pi s_{0} x\right)-\exp \left(-\mathrm{i} 2 \pi s_{0} x\right)\right] / 2 \mathrm{i}$. You will need to use the differentiation theorem of Fourier transform theory, and also carry out several integrations in the upper-half as well as lower-half of the complex s-plane.

