Please write your name and ID number on all the pages, then staple them together.

 Answer all the questions.Problem 1) The function $f(x)=|\cos (\pi x)|$ defined on the real x-axis is periodic, with a period $P=1$, as shown.

10 pts

15 pts
a) Using a combination of the functions $\operatorname{Rect}(x), \operatorname{Comb}(x)$, and $\cos (\pi x)$, express $f(x)$ without invoking the absolute value operator $|\cdot|$.
b) Find the Fourier series expansion of $f(x)$.

Problem 2) A complex function $W=f(Z)$ can be said to project certain contours in the complex Z-plane to the corresponding contours in the complex W-plane. For example, as shown in the figure below, $f(Z)=\exp (Z)=\exp (x+\mathrm{i} y)=\exp (x) \exp (\mathrm{i} y)$ projects straight vertical lines of the Z-plane onto circles of radius $r=\exp (x)$ in the W-plane. Similarly, straight horizontal lines of the Z-plane are projected by $\exp (Z)$ onto straight, semi-infinite lines emanating from the origin of the W-plane, which make an angle $\varphi=y$ with the u-axis.

Draw similar contour projections for the following complex functions:
a) $f_{1}(Z)=\ln Z$.

8 pts
b) $f_{2}(Z)=1 /(Z-1)$.

9 pts
c) $f_{3}(Z)=1 / \sqrt{Z-i}$.

Problem 3) Hyperbolic sine and cosine functions are defined in the complex z-plane as follows:

$$
\cosh (z)=1 / 2[\exp (z)+\exp (-z)] ; \quad \sinh (z)=1 / 2[\exp (z)-\exp (-z)]
$$

5 pts
5 pts
5 pts
10 pts
(i) $\int_{-\infty}^{\infty} \frac{1}{\cosh (x)} d x=\pi$.
(ii) $\int_{-\infty}^{\infty} \frac{x}{\cosh (x)} d x=0$.
(iii) $\int_{-\infty}^{\infty} \frac{x^{2}}{\cosh (x)} d x=\pi^{3} / 4$.

Problem 4) In the cylindrical coordinates system (r, φ, z), the (scalar) wave equation in threedimensional space is written as follows:

$$
v^{2} \nabla^{2} \psi(\boldsymbol{r}, t)=v^{2}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{\partial \psi}{r \partial r}+\frac{\partial^{2} \psi}{r^{2} \partial \varphi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)=\frac{\partial^{2} \psi}{\partial t^{2}}+\gamma \frac{\partial \psi}{\partial t} .
$$

Here ψ represents the vibration amplitude at location $\boldsymbol{r}=(r, \varphi, z)$ in space and instant t in time, v is the velocity of wave propagation in space, and γ is the damping coefficient.

In the system depicted in the above figure, the wave is confined to the interior of a hollow cylindrical can of radius R and length L, where the boundary conditions are given by

$$
\psi(r=R, \varphi, z, t)=0 ; \quad \psi(r, \varphi, z=0, t)=0 ; \quad \psi(r, \varphi, z=L, t)=0
$$

25 pts Use the method of separation of variables to determine the general form of the real-valued wave function $\psi(\boldsymbol{r}, t)$ inside the can. As usual, you may use $\rho_{m n}$ to represent the $n^{\text {th }}$ zero of $J_{m}(\rho)$, a Bessel function of the first kind, order m. You may also use the positive integer ℓ to represent the mode index for the z-dependent part of the wave function. As for the time-dependent part, allow for the possibility of over-damping, critical damping, and under-damping.

