Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

10 pts Problem 1) Using the contour shown below, verify that $\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{4}+4 a^{4}}=\frac{\pi}{8 a^{3}}$. Here a is a positive, real-valued parameter.

10 pts Problem 2) Use two different methods to determine the Fourier transform $F(s)$ of the function $f(x)$ shown below. The function is equal to $\cos (2 \pi x)$ when $|x|<3 / 4$, and zero otherwise. The first method is direct integration. For the second method, express $f(x)$ as the product of a periodic function and a rectangular pulse, then use the convolution theorem. Confirm that the two methods yield precisely the same result.

10 pts Problem 3) Use the method of Frobenius to find a solution to the following differential equation:

$$
x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)-\left(x^{2}+p^{2}\right) f(x)=0 .
$$

The constant p is real-valued and positive.
Note: The equation differs from Bessel's equation only in the sign of x^{2} in the coefficient of $f(x)$.
10 pts Problem 4) The real-valued function $h(x)$ is defined over the interval $0 \leq x \leq L$. It is desired to expand this function in a Fourier cosine series, as follows:

$$
h(x)=\sum_{n=0}^{\infty} c_{n} \cos (\pi n x / L)
$$

Find the coefficients c_{n}.

Problem 5) A thin membrane of radius R vibrates with an amplitude $z(r, \phi, t)$. Ignoring friction losses and denoting by v the velocity of wave propagation in the membrane, the governing equation is found to be

$$
v^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) z(r, \phi, t)=\frac{\partial^{2} z(r, \phi, t)}{\partial t^{2}}
$$

The membrane is firmly attached to a ring of radius R, so that $z(R, \phi, t)=0$. The initial amplitude of the vibrations is independent of the azimuthal coordinate ϕ, and is given by $z(r, \phi, 0)=h(r)$. The membrane's initial velocity is zero, that is, $\partial z(r, \phi, t) /\left.\partial t\right|_{t=0}=0$. The vibration amplitude for all times t is thus given by

$$
z(r, \phi, t)=\sum_{n=1}^{\infty} c_{n} J_{0}\left(r_{0 n} r / R\right) \cos \left(\omega_{n} t\right)
$$

where $r_{0 n}$ is the $n^{\text {th }}$ zero of $J_{0}(r)$, the Bessel function of first kind, $0^{\text {th }}$ order.
a) Verify that the initial velocity of the membrane at $t=0$ is in fact zero everywhere.
b) What is the value of ω_{n} in terms of $r_{0 n}, R$ and v ?
c) Find the values of c_{n} in terms of $h(r)$ and other known parameters of the system.

