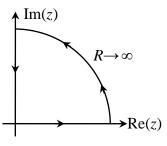
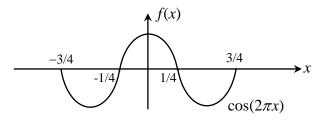
Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

10 pts **Problem 1**) Using the contour shown below, verify that $\int_0^\infty \frac{dx}{x^4 + 4a^4} = \frac{\pi}{8a^3}$. Here *a* is a positive, real-valued parameter.



10 pts **Problem 2**) Use two different methods to determine the Fourier transform F(s) of the function f(x) shown below. The function is equal to $\cos(2\pi x)$ when |x| < 3/4, and zero otherwise. The first method is direct integration. For the second method, express f(x) as the product of a periodic function and a rectangular pulse, then use the convolution theorem. Confirm that the two methods yield precisely the same result.



10 pts **Problem 3**) Use the method of Frobenius to find a solution to the following differential equation:

$$x^{2}f''(x) + xf'(x) - (x^{2} + p^{2})f(x) = 0.$$

The constant *p* is real-valued and positive.

Note: The equation differs from Bessel's equation only in the sign of x^2 in the coefficient of f(x).

10 pts **Problem 4**) The real-valued function h(x) is defined over the interval $0 \le x \le L$. It is desired to expand this function in a Fourier cosine series, as follows:

$$h(x) = \sum_{n=0}^{\infty} c_n \cos(\pi n x/L).$$

Find the coefficients c_n .

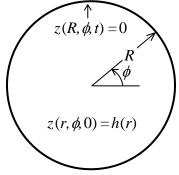
Problem 5) A thin membrane of radius *R* vibrates with an amplitude $z(r, \phi, t)$. Ignoring friction losses and denoting by v the velocity of wave propagation in the membrane, the governing equation is found to be

$$v^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial \phi^{2}}\right)z(r,\phi,t)=\frac{\partial^{2}z(r,\phi,t)}{\partial t^{2}}.$$

The membrane is firmly attached to a ring of radius *R*, so that $z(R, \phi, t) = 0$. The initial amplitude of the vibrations is independent of the azimuthal coordinate ϕ , and is given by $z(r, \phi, 0) = h(r)$. The membrane's initial velocity is zero, that is, $\partial z(r, \phi, t)/\partial t|_{t=0} = 0$.

The vibration amplitude for all times *t* is thus given by

$$z(r,\phi,t) = \sum_{n=1}^{\infty} c_n J_0(r_{0n}r/R)\cos(\omega_n t)$$



where r_{0n} is the n^{th} zero of $J_0(r)$, the Bessel function of first kind, 0^{th} order.

2 pts a) Verify that the initial velocity of the membrane at t = 0 is in fact zero everywhere.

3 pts b) What is the value of ω_n in terms of r_{0n} , R and V?

5 pts c) Find the values of c_n in terms of h(r) and other known parameters of the system.