Final Exam (5/7/2012)

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) Let f(x) and g(x) be two arbitrary functions of the real variable x whose Fourier transforms are given by F(s) and G(s), respectively. In general, f(x), g(x), F(s), and G(s) are complex-valued functions of their respective real variables.

4 pts a) Using the defining integrals of direct and inverse Fourier transformation, prove the following identity, which is commonly referred to as Parseval's theorem:

$$\int_{-\infty}^{\infty} f(x)g^{*}(x) dx = \int_{-\infty}^{\infty} F(s)G^{*}(s) ds$$

Considering that $\mathcal{F}{\text{Rect}(x)} = \text{sinc}(s)$, $\mathcal{F}{\text{Tri}(x)} = \text{sinc}^2(s)$, and $\mathcal{F}{\exp(-|x|)} = 2/[1 + (2\pi s)^2]$, use Parseval's theorem to evaluate the following definite integrals:

- 2 pts b) $\int_{-\infty}^{\infty} \operatorname{sinc}^{3}(s) ds$,
- 2 pts c) $\int_{-\infty}^{\infty} \operatorname{sinc}^4(s) \mathrm{d}s$,
- 2 pts d) $\int_0^\infty \exp(-x)\operatorname{sinc}(x)dx$.

10 pts **Problem 2**) The Bessel function of first kind, order *n* has the following Taylor series expansion:

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m (x/2)^{2m+n}}{m! (n+m)!}.$$

Show by direct substitution into the Bessel equation $x^2 f''(x) + x f'(x) + (\alpha^2 x^2 - n^2) f(x) = 0$, that $J_n(\alpha x)$ satisfies the Bessel equation. Here α is an arbitrary real-valued constant.

10 pts **Problem 3**) Use the method of Frobenius to find the general solution to the following linear, ordinary differential equation with constant coefficients:

$$\frac{d^2 f(x)}{dx^2} + 2\frac{df(x)}{dx} + f(x) = 0.$$

Hint: The indicial equation has three solutions, $s_1=0$, $s_2=1$, and $s_3=-1$. While s_1 and s_3 lead to the most general solution of the differential equation, it is easier to start with s_2 in order to obtain one of the two independent solutions. The other solution may then be found using either s_1 or s_3 .

10 pts **Problem 4**) A thin, solid disk of radius *R* and thermal diffusivity *D* [cm²/sec] has an initial temperature distribution $T(r, \phi, t = 0) = T_0 + f(r) \cos \phi$. Here T_0 is the constant ambient temperature, f(r), a function of the radial coordinate *r*, is specified in the interval $0 \le r \le R$, and the azimuthal angle ϕ covers the entire available range from 0 to 2π . The boundary of the disk at

r=R is kept at the constant ambient temperature at all times $t \ge 0$, so that $T(r=R,\phi,t)=T_{o}$. (The disk is sufficiently thin, so that its temperature profile through the thickness may be assumed to be uniform.) Obtain the solution to the 2-dimensional heat diffusion equation $D\nabla^2 T(r,\phi,t) = \partial T(r,\phi,t)/\partial t$ for $t \ge 0$ using the method of separation of variables.

Hint: The Laplacian operator in cylindrical

coordinates is $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2}.$

