Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) Let $f(x)$ and $g(x)$ be two arbitrary functions of the real variable x whose Fourier transforms are given by $F(s)$ and $G(s)$, respectively. In general, $f(x), g(x), F(s)$, and $G(s)$ are complex-valued functions of their respective real variables.

Problem 2) The Bessel function of first kind, order n has the following Taylor series expansion:

$$
J_{n}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}(x / 2)^{2 m+n}}{m!(n+m)!}
$$

Show by direct substitution into the Bessel equation $x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)+\left(\alpha^{2} x^{2}-n^{2}\right) f(x)=0$, that $J_{n}(\alpha x)$ satisfies the Bessel equation. Here α is an arbitrary real-valued constant.

10 pts Problem 3) Use the method of Frobenius to find the general solution to the following linear, ordinary differential equation with constant coefficients:

$$
\frac{\mathrm{d}^{2} f(x)}{\mathrm{d} x^{2}}+2 \frac{\mathrm{~d} f(x)}{\mathrm{d} x}+f(x)=0
$$

Hint: The indicial equation has three solutions, $s_{1}=0, s_{2}=1$, and $s_{3}=-1$. While s_{1} and s_{3} lead to the most general solution of the differential equation, it is easier to start with s_{2} in order to obtain one of the two independent solutions. The other solution may then be found using either s_{1} or s_{3}.

10 pts
a) Using the defining integrals of direct and inverse Fourier transformation, prove the following identity, which is commonly referred to as Parseval's theorem:

$$
\int_{-\infty}^{\infty} f(x) g^{*}(x) \mathrm{d} x=\int_{-\infty}^{\infty} F(s) G^{*}(s) \mathrm{d} s
$$

Considering that $\mathcal{F}\{\operatorname{Rect}(x)\}=\operatorname{sinc}(s), \mathcal{F}\{\operatorname{Tri}(x)\}=\operatorname{sinc}^{2}(s)$, and $\mathscr{F}\{\exp (-|x|)\}=2 /\left[1+(2 \pi s)^{2}\right]$, use Parseval's theorem to evaluate the following definite integrals:
b) $\int_{-\infty}^{\infty} \operatorname{sinc}^{3}(s) \mathrm{d} s$,
c) $\int_{-\infty}^{\infty} \operatorname{sinc}^{4}(s) \mathrm{d}$,
d) $\int_{0}^{\infty} \exp (-x) \operatorname{sinc}(x) \mathrm{d} x$.

Problem 4) A thin, solid disk of radius R and thermal diffusivity $D\left[\mathrm{~cm}^{2} / \mathrm{sec}\right]$ has an initial temperature distribution $T(r, \phi, t=0)=T_{o}+f(r) \cos \phi$. Here T_{0} is the constant ambient temperature, $f(r)$, a function of the radial coordinate r, is specified in the interval $0 \leq r \leq R$, and the azimuthal angle ϕ covers the entire available range from 0 to 2π. The boundary of the disk at
$r=R$ is kept at the constant ambient temperature at all times $t \geq 0$, so that $T(r=R, \phi, t)=T_{0}$. (The disk is sufficiently thin, so that its temperature profile through the thickness may be assumed to be uniform.) Obtain the solution to the 2-dimensional heat diffusion equation $D \nabla^{2} T(r, \phi, t)=\partial T(r, \phi, t) / \partial t$ for $t \geq 0$ using the method of separation of variables.

Hint: The Laplacian operator in cylindrical
coordinates is $\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}$.

