Please write your name and ID number on all the pages, then staple them together.

 Answer all the questions.8 pts Problem 1) Using the contour shown, verify that $\int_{0}^{\infty} \frac{x \mathrm{~d} x}{x^{4}+1}=\frac{\pi}{4}$.

8 pts Problem 2) Using the method of Frobenius, find the solution to the following differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2} f(x)}{\mathrm{d} x^{2}}+x \frac{\mathrm{~d} f(x)}{\mathrm{d} x}+\left(x^{2}-\frac{1}{4}\right) f(x)=0 .
$$

8 pts Problem 3) A thin strip of a homogeneous material is located in the $x y$-plane, in the region $0 \leq x \leq L$ and $0 \leq y<\infty$. The slab is isolated from the environment on all sides, except at its lower edge along the x-axis, where the temperature is maintained at $T(x, y=0)=T_{0}(x)$ over the entire interval $0 \leq x \leq L$. Considering that the steady-state temperature distribution satisfies the 2D Laplace's equation

$$
\frac{\partial^{2} T(x, y)}{\partial x^{2}}+\frac{\partial^{2} T(x, y)}{\partial y^{2}}=0
$$

determine the temperature profile $T(x, y)$ of the slab.
8 pts Problem 4) A large, solid, homogeneous cylinder of height L and radius R sits atop the $x y$-plane and is centered on the z-axis. (For all practical purposes you may assume that R and L approach infinity.) The cylinder is isolated on all sides except on its bottom facet, where the temperature is maintained at $T(r, \phi, z=0)=T_{\mathrm{o}}(r)$. The steady-state temperature distribution, being independent of the azimuthal angle ϕ, satisfies the 2D Laplace's equation in cylindrical coordinates, namely,

$$
\frac{\partial^{2} T(r, z)}{\partial r^{2}}+\frac{1}{r} \frac{\partial T(r, z)}{\partial r}+\frac{\partial^{2} T(r, z)}{\partial z^{2}}=0
$$

Find the steady-state temperature profile $T(r, z)$ of the cylinder.

Problem 5) Consider the second-order linear differential equation

$$
a_{0}(x) \frac{\mathrm{d}^{2} f(x)}{\mathrm{d} x^{2}}+a_{1}(x) \frac{\mathrm{d} f(x)}{\mathrm{d} x}+\left[a_{2}(x)+\lambda a_{3}(x)\right] f(x)=0 .
$$

4 pts a) Multiply the equation with an arbitrary function $g(x)$, then determine $g(x)$ such that the equation may be written in the standard Sturm-Liouville form, namely,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[p(x) \frac{\mathrm{d} f(x)}{\mathrm{d} x}\right]+[q(x)+\lambda r(x)] f(x)=0 .
$$

Derive explicit expressions for $p(x), q(x)$, and $r(x)$ in terms of $a_{0}(x), a_{1}(x), a_{2}(x)$ and $a_{3}(x)$.
4 pts
b) Reduce each of the following equations to the standard Sturm-Liouville form:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} f(x)}{\mathrm{d} x^{2}}+\operatorname{cotg}(x) \frac{\mathrm{d} f(x)}{\mathrm{d} x}+\lambda f(x)=0 . \\
x \frac{\mathrm{~d}^{2} f(x)}{\mathrm{d} x^{2}}+(1-x) \frac{\mathrm{d} f(x)}{\mathrm{d} x}+\left(x^{2}+\lambda\right) f(x)=0 .
\end{gathered}
$$

