Problem 13) Method 1: Let $\varepsilon=1 / 365$. The first person (A) has a certain birthday. The chance that the second person (B) will have a different birthday is $(1-\varepsilon)$. The chance that the third person (C) will have a different birthday than the first two is $(1-2 \varepsilon)$. Thus, the chance that all n people in the room have different birthdays is

Probability of no coincident birthdays $=(1-\varepsilon)(1-2 \varepsilon) \cdots[1-(n-1) \varepsilon]$.
For an integer m, if $m \varepsilon$ is sufficiently small, one can approximate $(1-m \varepsilon)$ with $(1-\varepsilon)^{m}$, in which case the above probability becomes (approximately):

$$
\begin{aligned}
\text { Probability of no coincident birthdays } & \cong(1-\varepsilon)(1-\varepsilon)^{2} \cdots(1-\varepsilon)^{n-1} \\
& =(1-\varepsilon)^{1+2+\cdots+(n-1)} \\
& =(1-\varepsilon)^{n(n-1) / 2} \\
& =(1-\varepsilon)^{\binom{n}{2}} .
\end{aligned}
$$

For $n=25$, there will be no coincident birthdays with a probability of $(364 / 365)^{300}=0.44$, which means that there is 56% chance that at least two out of the 25 will have the same birthday. Alternatively, given that for sufficiently small values of $m \varepsilon, \ln (1-m \varepsilon) \cong-m \varepsilon$, we will have

$$
\ln \{(1-\varepsilon)(1-2 \varepsilon) \cdots[1-(n-1) \varepsilon]\} \cong-[1+2+\cdots+(n-1)] \varepsilon=-1 / 2 n(n-1) \varepsilon
$$

Consequently, the probability of no coincident birthdays is about $e^{-1 / 2 n(n-1) \varepsilon}$, which, for $n=25$ is, once again, equal to 0.44 .

Method 2: The total number of distinct pairs of individuals is $\binom{n}{2}$. The probability that the two individuals in any given pair will have different birthdays is $(1-\varepsilon)$. Therefore, the probability that no pair of individuals in the room will share a birthday is

$$
\text { Probability of no coincident birthdays }=(1-\varepsilon)\binom{n}{2} .
$$

Discussion: The two methods are seen to yield similar results when $n \varepsilon$ is sufficiently small. Of these, Method 1 is exact and Method 2 is approximate. To see the approximate nature of Method 2, consider the case of $n=3$, and let the three individuals be A, B, and C. The first pair (A, B) will have distinct birthdays with a probability of $(1-\varepsilon)$. Similarly, the second pair (A, C) will have distinct birthdays with a probability of $(1-\varepsilon)$. However, the case of the third pair (B, C) is somewhat different. Since it has already been established that neither B nor C has the same birthday as A, each individual of the third pair must have a birthday on one of the remaining 364 days of the year. Therefore, the probability of having distinct birthdays for the third pair is $363 / 364$, which no longer equals $(1-\varepsilon)$.

