Solution to Problem 11) a) The plot of the function $\ln x$, shown below, is tangent to the straight line $y=x-1$, which makes contact with $\ln x$ at $x=1$. Since $\ln x$ is convex cap throughout the entire region $x>0$, it must stay below its tangent line. Consequently, $\ln x \leq x-1$, with equality satisfied only at $x=1$.

b) $I(x, y)=H(x)-H(x \mid y)$

$$
\begin{aligned}
& =-\sum_{n} p_{x}\left(x_{n}\right) \ln p_{x}\left(x_{n}\right)+\sum_{m} p_{y}\left(y_{m}\right) \sum_{n}\left[p_{x \mid y}\left(x_{n} \mid y_{m}\right) \ln p_{x \mid y}\left(x_{n} \mid y_{m}\right)\right] \\
& =-\sum_{m} \sum_{n} p_{x y}\left(x_{n}, y_{m}\right) \ln p_{x}\left(x_{n}\right)+\sum_{m} \sum_{n}\left[p_{y}\left(y_{m}\right) p_{x \mid y}\left(x_{n} \mid y_{m}\right) \ln p_{x \mid y}\left(x_{n} \mid y_{m}\right)\right] \\
& =-\sum_{m} \sum_{n} p_{x y}\left(x_{n}, y_{m}\right) \ln \left[p_{x}\left(x_{n}\right) p_{y}\left(y_{m}\right) / p_{x y}\left(x_{n}, y_{m}\right)\right] \\
& \geq \sum_{m} \sum_{n} p_{x y}\left(x_{n}, y_{m}\right)\left\{1-\left[p_{x}\left(x_{n}\right) p_{y}\left(y_{m}\right) / p_{x y}\left(x_{n}, y_{m}\right)\right]\right\} \\
& =\sum_{m} \sum_{n} p_{x y}\left(x_{n}, y_{m}\right)-\sum_{m} \sum_{n} p_{x}\left(x_{n}\right) p_{y}\left(y_{m}\right) \\
& =1-\left[\sum_{n} p_{x}\left(x_{n}\right)\right] \times\left[\sum_{m} p_{y}\left(y_{m}\right)\right]=1-1 \times 1=0 .
\end{aligned}
$$

Therefore, $I(x, y) \geq 0$. Equality holds only if x and y happen to be independent random variables, that is, when $p_{x y}\left(x_{n}, y_{m}\right)=p_{x}\left(x_{n}\right) p_{y}\left(y_{m}\right)$ for all values of n and m.

