Solution to Problem 10) a) With reference to Problem 5, the second derivative of $f(x)=e^{x}$ is $f^{\prime \prime}(x)=e^{x}$, which is positive everywhere. Therefore, $e^{x}$ is a convex cup function. The second derivative of $g(x)=\ln x$ is $g^{\prime \prime}(x)=-1 / x^{2}$, which is negative on the positive $x$-axis. Therefore, $\ln x$ is a convex cap function.
b) Invoking Jensen's inequality, we conclude that, for the convex cup function $e^{x}$, one must have $\left\langle e^{x}\right\rangle \geq e^{\langle x\rangle}$, and for the convex cap function $\ln x$, one must have $\langle\ln x\rangle \leq \ln \langle x\rangle$.

