Solution to Problem 7) With reference to Problem 6, the characteristic functions of our binomial distributions are given by

$$
\begin{aligned}
& \psi_{1}(s)=[p \cos (2 \pi s)+1-p-\mathrm{i} p \sin (2 \pi s)]^{N_{1}} \\
& \psi_{2}(s)=[p \cos (2 \pi s)+1-p-\mathrm{i} p \sin (2 \pi s)]^{N_{2}}
\end{aligned}
$$

Upon multiplying the above characteristic functions, we find the characteristic function of the sum $x_{1}+x_{2}$ of our two random variables. Considering that both x_{1} and x_{2} have the same parameter p, the product of their characteristic functions will be that of a binomial distribution with parameters p and $N_{1}+N_{2}$.

The above result, of course, should have been anticipated from the basic properties of the binomial distribution. Each binomial distribution is the result of N repetitions of a binary experiment whose outcomes, $\zeta_{1}=1$ and $\zeta_{2}=0$, have probabilities $p_{1}=p$ and $p_{2}=(1-p)$, respectively. If the binary experiment is repeated N_{1} (independent) times and its outcomes are added together, we obtain our first random variable x_{1}. Similarly, if the binary experiment is repeated N_{2} times (again independently) and its outcomes are added together, we obtain our second random variable x_{2}. It is clear that adding x_{1} and x_{2} is tantamount to repeating the original binary experiment (with outcomes ζ_{1} and ζ_{2}) a total of $N_{1}+N_{2}$ times.

