Solution to Problem 6) a) The discrete binomial probability distribution function is
represented by a set of equally spaced delta-functions located at x =0,1,2,---,N. Its
Fourier transform is evaluated as follows:

Y(s) = ffooop(x) exp(—i2msx) dx
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b) As a check on the above result, note that ¥(s)|,—o = 1. Next, we compute the
derivative of Y (s) at s = 0, as follows:

Y'(8)|seo = —2mNp[sin(2ms) + icos(2ms)][p cos(2ms) + 1 — p — ip sin(2ms) V1
= —i2nNp. (2)

Comparison with Eq.(29) shows that (n) = Np. Similarly, the second derivative of
Y(s) at s = 0 is found to be

Y"(5)|so = —4m%Np[cos(2ms) — isin(2ms)][p cos(2ms) —p + 1 — ip sin(2ms) ]V ~?
+472N(N — 1)p?[sin(2ms) + i cos(2ms)]?
X [pcos(2ms) + 1 —p — ip sin(2ms) ]V 72|40
= —4m2Np[1 + (N — Dp]. (3)

Comparison with Eq.(29) now confirms that (n?) = N?p? + Np(1 — p), and that,
therefore, o7 = (n?) — (n)? = Np(1 — p). The average and the variance of the binomial
distribution thus obtained are seen to agree with the results found directly in Sec.6.

c¢) The binomial probability density function consists of a series of equally-spaced delta-
functions at unit intervals. It, therefore, resembles a continuous function that has been
sampled (at equal intervals) with the aid of a standard comb function. The characteristic
function P (s) thus becomes a repeated version of the Fourier transform of the underlying
continuous function. The period of ¥ (s) will be the inverse of the sampling interval,
which, in the present case, is 1.0. Thus, we expect Y(s) to be a periodic function of s,
with a period of 1.0. This is indeed the case, as revealed by a quick inspection of Eq.(1).

d) We focus our attention on the behavior of ¥(s) in the vicinity of the point s = 0,
where each single-period of ¥(s) becomes narrower with an increasing N, as the
continuous function underlying the binomial probability density function becomes wider.
Approximating sin(2mws) with 27s, and cos(2ms) with 1 — 2m%s? in the vicinity of
s = 0, we find that, in the neighborhood of s = 0, the approximate form of (s) for
large values of N is given by

Y(s) = (1 — 2pm?s? —i2mps)V. 4)



At his point, we attempt to approximate the base expression (1 — 2pm?s? — i2mps)
with e*, where x is a small entity that depends on p and s. Considering that the first few
terms in the Taylor series expansion of e* yield exp(x) = 1 + x + %x?2, we will have

x% + 2x + idmps(1 — ims) = 0. (3)

The only acceptable solution of the quadratic Eq.(5) is x = /1 — i4nps(1 — ins) — 1.
Invoking the small & approximation V1 + & = 1 + Y& — Y%e?2, and retaining only the
terms up to and including 2" order in s, we now find

x = \/1 — i4mps(1 —ims) — 1 = —i2aps(1 — ins) — Ye[—idmps(1 — ims)]?
=~ —i2nps(1 — ins) + 2m?p?s? = —2n%p(1 — p)s? — i2naps. (6)
The characteristic function of Eq.(4) may now be written as follows:
Y(s) = exp[—2m%Np(1 — p)s? — i2nNps]. (7)

Comparison with Eq.(30) of Sec.7 shows that the above characteristic function for
the binomial distribution coincides with the corresponding function for a Gaussian
random variable x whose average and variance are (x) = Np and oy = Np(1 —p),
respectively. These, of course, are the average and variance of the binomial distribution.
The continuous function underlying the discrete binomial probability density function is
thus seen to approach a Gaussian density function for large values of N.




