Solution to Problem 6) a) The discrete binomial probability distribution function is represented by a set of equally spaced delta-functions located at $x=0,1,2, \cdots, N$. Its Fourier transform is evaluated as follows:

$$
\begin{align*}
\psi(s) & =\int_{-\infty}^{\infty} p(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x \\
& =\sum_{n=0}^{N}\binom{N}{n} p^{n}(1-p)^{N-n} \exp (-\mathrm{i} 2 \pi s n) \\
& =(1-p)^{N} \sum_{n=0}^{N}\binom{N}{n}[p \exp (-\mathrm{i} 2 \pi s) /(1-p)]^{n} \\
& =(1-p)^{N}[1+p \exp (-\mathrm{i} 2 \pi s) /(1-p)]^{N} \\
& =[p \cos (2 \pi s)+1-p-\mathrm{i} p \sin (2 \pi s)]^{N} . \tag{1}
\end{align*}
$$

b) As a check on the above result, note that $\left.\psi(s)\right|_{s=0}=1$. Next, we compute the derivative of $\psi(s)$ at $s=0$, as follows:

$$
\begin{align*}
\left.\psi^{\prime}(s)\right|_{s=0} & =-2 \pi N p[\sin (2 \pi s)+\mathrm{i} \cos (2 \pi s)][p \cos (2 \pi s)+1-p-\mathrm{i} p \sin (2 \pi s)]^{N-1} \\
& =-\mathrm{i} 2 \pi N p . \tag{2}
\end{align*}
$$

Comparison with Eq.(29) shows that $\langle n\rangle=N p$. Similarly, the second derivative of $\psi(s)$ at $s=0$ is found to be

$$
\begin{align*}
\left.\psi^{\prime \prime}(s)\right|_{s=0}= & -4 \pi^{2} N p[\cos (2 \pi s)-\mathrm{i} \sin (2 \pi s)][p \cos (2 \pi s)-p+1-\mathrm{i} p \sin (2 \pi s)]^{N-1} \\
& +4 \pi^{2} N(N-1) p^{2}[\sin (2 \pi s)+\mathrm{i} \cos (2 \pi s)]^{2} \\
& \times\left.[p \cos (2 \pi s)+1-p-\mathrm{i} p \sin (2 \pi s)]^{N-2}\right|_{s=0} \\
= & -4 \pi^{2} N p[1+(N-1) p] \tag{3}
\end{align*}
$$

Comparison with Eq. (29) now confirms that $\left\langle n^{2}\right\rangle=N^{2} p^{2}+N p(1-p)$, and that, therefore, $\sigma_{n}^{2}=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=N p(1-p)$. The average and the variance of the binomial distribution thus obtained are seen to agree with the results found directly in Sec.6.
c) The binomial probability density function consists of a series of equally-spaced deltafunctions at unit intervals. It, therefore, resembles a continuous function that has been sampled (at equal intervals) with the aid of a standard comb function. The characteristic function $\psi(s)$ thus becomes a repeated version of the Fourier transform of the underlying continuous function. The period of $\psi(s)$ will be the inverse of the sampling interval, which, in the present case, is 1.0 . Thus, we expect $\psi(s)$ to be a periodic function of s, with a period of 1.0. This is indeed the case, as revealed by a quick inspection of Eq.(1).
d) We focus our attention on the behavior of $\psi(s)$ in the vicinity of the point $s=0$, where each single-period of $\psi(s)$ becomes narrower with an increasing N, as the continuous function underlying the binomial probability density function becomes wider. Approximating $\sin (2 \pi s)$ with $2 \pi s$, and $\cos (2 \pi s)$ with $1-2 \pi^{2} s^{2}$ in the vicinity of $s=0$, we find that, in the neighborhood of $s=0$, the approximate form of $\psi(s)$ for large values of N is given by

$$
\begin{equation*}
\psi(s) \cong\left(1-2 p \pi^{2} s^{2}-\mathrm{i} 2 \pi p s\right)^{N} . \tag{4}
\end{equation*}
$$

At his point, we attempt to approximate the base expression ($1-2 p \pi^{2} s^{2}-\mathrm{i} 2 \pi p s$) with e^{x}, where x is a small entity that depends on p and s. Considering that the first few terms in the Taylor series expansion of e^{x} yield $\exp (x) \cong 1+x+1 / 2 x^{2}$, we will have

$$
\begin{equation*}
x^{2}+2 x+\mathrm{i} 4 \pi p s(1-\mathrm{i} \pi s) \cong 0 \tag{5}
\end{equation*}
$$

The only acceptable solution of the quadratic Eq.(5) is $x \cong \sqrt{1-\mathrm{i} 4 \pi p s(1-\mathrm{i} \pi s)}-1$. Invoking the small ε approximation $\sqrt{1+\varepsilon} \cong 1+1 / 2 \varepsilon-1 / 8 \varepsilon^{2}$, and retaining only the terms up to and including $2^{\text {nd }}$ order in s, we now find

$$
\begin{align*}
x & \cong \sqrt{1-\mathrm{i} 4 \pi p s(1-\mathrm{i} \pi s)}-1 \cong-\mathrm{i} 2 \pi p s(1-\mathrm{i} \pi s)-1 / 8[-\mathrm{i} 4 \pi p s(1-\mathrm{i} \pi s)]^{2} \\
& \cong-\mathrm{i} 2 \pi p s(1-\mathrm{i} \pi s)+2 \pi^{2} p^{2} s^{2}=-2 \pi^{2} p(1-p) s^{2}-\mathrm{i} 2 \pi p s \tag{6}
\end{align*}
$$

The characteristic function of Eq.(4) may now be written as follows:

$$
\begin{equation*}
\psi(s) \cong \exp \left[-2 \pi^{2} N p(1-p) s^{2}-\mathrm{i} 2 \pi N p s\right] \tag{7}
\end{equation*}
$$

Comparison with Eq.(30) of Sec. 7 shows that the above characteristic function for the binomial distribution coincides with the corresponding function for a Gaussian random variable x whose average and variance are $\langle x\rangle=N p$ and $\sigma_{x}^{2}=N p(1-p)$, respectively. These, of course, are the average and variance of the binomial distribution. The continuous function underlying the discrete binomial probability density function is thus seen to approach a Gaussian density function for large values of N.

