Solution to Problem 4) Considering that x and y are independent random variables, and that $z=x-y$, we may write

$$
\begin{gather*}
\langle z\rangle=\langle x\rangle-\langle y\rangle . \tag{1}\\
\left\langle z^{2}\right\rangle=\left\langle(x-y)^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle-2\langle x y\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle-2\langle x\rangle\langle y\rangle . \tag{2}
\end{gather*}
$$

Consequently,

$$
\begin{equation*}
\sigma_{z}^{2}=\left\langle z^{2}\right\rangle-\langle z\rangle^{2}=\left(\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle-2\langle x\rangle\langle y\rangle\right)-\left(\langle x\rangle^{2}+\langle y\rangle^{2}-2\langle x\rangle\langle y\rangle\right)=\sigma_{x}^{2}+\sigma_{y}^{2} \tag{3}
\end{equation*}
$$

The same results can be obtained by starting with the characteristic function $\psi_{z}(s)$ of the random variable z. Since, for the random variable $-y$, the probability density function is $p_{y}(-y)$, the corresponding characteristic function is found to be

$$
\begin{equation*}
\psi_{-y}(s)=\int_{-\infty}^{\infty} p_{y}(-y) \exp (-\mathrm{i} 2 \pi s y) \mathrm{d} y=\int_{-\infty}^{\infty} p_{y}(y) \exp (\mathrm{i} 2 \pi s y) \mathrm{d} y=\psi_{y}^{*}(s) \tag{4}
\end{equation*}
$$

Consequently, the characteristic function $\psi_{z}(s)$ of $z=x-y=x+(-y)$ is given by the product $\psi_{x}(s) \psi_{y}^{*}(s)$. As expected, $\psi_{z}(0)=\psi_{x}(0) \psi_{y}^{*}(0)=1$. As for the derivatives of $\psi_{z}(s)$, we have

$$
\begin{align*}
\left.\psi_{z}^{\prime}(s)\right|_{s=0} & =\left[\psi_{x}^{\prime}(s) \psi_{y}^{*}(s)+\psi_{x}(s) \psi_{y}^{\prime *}(s)\right]_{s=0}=\psi_{x}^{\prime}(0)+\psi_{y}^{\prime *}(0) \tag{5}\\
\left.\psi_{z}^{\prime \prime}(s)\right|_{s=0} & =\left[\psi_{x}^{\prime \prime}(s) \psi_{y}^{*}(s)+\psi_{x}(s) \psi_{y}^{\prime *}(s)+2 \psi_{x}^{\prime}(s) \psi_{y}^{\prime *}(s)\right]_{s=0} \\
& =\psi_{x}^{\prime \prime}(0)+\psi_{y}^{\prime{ }^{*}}(0)+2 \psi_{x}^{\prime}(0) \psi_{y}^{\prime *}(0) \tag{6}
\end{align*}
$$

Comparison with Eq.(29) of Sec. 7 now reveals that $\langle z\rangle=\langle x\rangle-\langle y\rangle$, and $\left\langle z^{2}\right\rangle=$ $\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle-2\langle x\rangle\langle y\rangle$. These, indeed, are the same results that we obtained directly in Eqs.(1) and (2).

