Solution to Problem 3) Let $z=x+y$ be the sum of two independent random variables, which are denoted by x and y. The average, the second moment, and the variance of z are readily found as follows:

$$
\begin{gathered}
\langle z\rangle=\langle x+y\rangle=\langle x\rangle+\langle y\rangle . \\
\left\langle z^{2}\right\rangle=\left\langle(x+y)^{2}\right\rangle=\left\langle x^{2}+y^{2}+2 x y\right\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+2\langle x\rangle\langle y\rangle . \\
\sigma_{z}^{2}=\left\langle z^{2}\right\rangle-\langle z\rangle^{2}=\left[\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+2\langle x\rangle\langle y\rangle\right]-\left[\langle x\rangle^{2}+\langle y\rangle^{2}+2\langle x\rangle\langle y\rangle\right]=\sigma_{x}^{2}+\sigma_{y}^{2} .
\end{gathered}
$$

The same results can be obtained by recognizing that the characteristic function $\psi_{z}(s)$ of z is the product of the characteristic functions $\psi_{x}(s)$ and $\psi_{y}(s)$ of the random variables x and y. We then write

$$
\begin{aligned}
\left.\psi_{z}^{\prime}(s)\right|_{s=0}= & {\left.\left[\psi_{x}^{\prime}(s) \psi_{y}(s)+\psi_{x}(s) \psi_{y}^{\prime}(s)\right]\right|_{s=0}=\psi_{x}^{\prime}(0)+\psi_{y}^{\prime}(0) } \\
\left.\psi_{z}^{\prime \prime}(s)\right|_{s=0} & =\left.\left[\psi_{x}^{\prime \prime}(s) \psi_{y}(s)+\psi_{x}(s) \psi_{y}^{\prime \prime}(s)+2 \psi_{x}^{\prime}(s) \psi_{y}^{\prime}(s)\right]\right|_{s=0} \\
& =\psi_{x}^{\prime \prime}(0)+\psi_{y}^{\prime \prime}(0)+2 \psi_{x}^{\prime}(0) \psi_{y}^{\prime}(0)
\end{aligned}
$$

From Eq.(29), Sec.7, we learn that $\psi_{x}^{\prime}(0)=-\mathrm{i} 2 \pi\langle x\rangle$ and $\psi_{y}^{\prime}(0)=-\mathrm{i} 2 \pi\langle y\rangle$. Consequently, $\psi_{z}^{\prime}(0)=-i 2 \pi(\langle x\rangle+\langle y\rangle)$, which yields $\langle z\rangle=\langle x\rangle+\langle y\rangle$. Similarly, $\psi_{x}^{\prime \prime}(0)=-4 \pi^{2}\left\langle x^{2}\right\rangle$ and $\psi_{y}^{\prime \prime}(0)=-4 \pi^{2}\left\langle y^{2}\right\rangle$, which result in

$$
\psi_{z}^{\prime \prime}(0)=-4 \pi^{2}\left(\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+2\langle x\rangle\langle y\rangle\right) \quad \rightarrow \quad\left\langle z^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+2\langle x\rangle\langle y\rangle .
$$

