Solution to Problem 1) Considering that $\langle x\rangle=\sum_{n=1}^{N} p_{n} x_{n}$, and that $x_{1} \leq x_{2} \leq \cdots \leq x_{N}$, and also that $p_{n} \geq 0$, it is readily observed that $\langle x\rangle \geq \sum_{n=1}^{N} p_{n} x_{1}=\left(\sum_{n=1}^{N} p_{n}\right) x_{1}=x_{1}$. Similarly, $\langle x\rangle \leq \sum_{n=1}^{N} p_{n} x_{N}=\left(\sum_{n=1}^{N} p_{n}\right) x_{N}=x_{N}$. Consequently, $x_{1} \leq\langle x\rangle \leq x_{N}$.

