Problem 12-21) Green's first identity was derived in Problem 20 by starting with the vectorfield $\phi \nabla \psi$. The same procedure may be followed for the vector-field $\psi \nabla \phi$. The two identities thus obtained are given below:

$$
\begin{aligned}
& \int_{\text {volume }}\left\{\phi(\boldsymbol{r}) \nabla^{2} \psi(\boldsymbol{r})+[\nabla \phi(\boldsymbol{r})] \cdot[\nabla \psi(\boldsymbol{r})]\right\} \mathrm{d} v=\oint_{\text {surface }} \phi(\boldsymbol{r}) \frac{\partial \psi(\boldsymbol{r})}{\partial \boldsymbol{n}} \mathrm{d} s, \\
& \int_{\text {volume }}\left\{\psi(\boldsymbol{r}) \nabla^{2} \phi(\boldsymbol{r})+[\nabla \psi(\boldsymbol{r})] \cdot[\nabla \phi(\boldsymbol{r})]\right\} \mathrm{d} v=\oint_{\text {surface }} \psi(\boldsymbol{r}) \frac{\partial \boldsymbol{\partial}(\boldsymbol{r})}{\partial \boldsymbol{n}} \mathrm{d} s .
\end{aligned}
$$

Subtracting the second of the above identities from the first, we arrive at Green's theorem, namely,

$$
\int_{\text {volume }}\left[\phi(\boldsymbol{r}) \nabla^{2} \psi(\boldsymbol{r})-\psi(\boldsymbol{r}) \nabla^{2} \phi(\boldsymbol{r})\right] \mathrm{d} v=\oint_{\text {surface }}\left[\phi(\boldsymbol{r}) \frac{\partial \psi(\boldsymbol{r})}{\partial \boldsymbol{n}}-\psi(\boldsymbol{r}) \frac{\partial \phi(\boldsymbol{r})}{\partial \boldsymbol{n}}\right] \mathrm{d} s .
$$

