Problem 12-20) Applying Gauss's theorem to the vector-field $\phi \nabla \psi$ yields:

$$
\int_{\text {volume }} \nabla \cdot(\phi \nabla \psi) \mathrm{d} v=\int_{\text {surface }}(\phi \nabla \psi) \cdot \mathrm{d} \boldsymbol{s}=\oint_{\text {surface }} \phi(\boldsymbol{r}) \frac{\partial \psi(\boldsymbol{r})}{\partial \boldsymbol{n}} \mathrm{d} s .
$$

Next, we apply the identity $\boldsymbol{\nabla} \cdot(\psi \boldsymbol{A})=(\nabla \psi) \cdot \boldsymbol{A}+\psi \boldsymbol{\nabla} \cdot \boldsymbol{A}$, proved in Problem 14(a), to the left-hand-side of the above equation. We will have

$$
\int_{\text {volume }} \boldsymbol{\nabla} \cdot(\phi \nabla \psi) \mathrm{d} v=\int_{\text {volume }}(\nabla \phi \cdot \nabla \psi+\phi \nabla \cdot \nabla \psi) \mathrm{d} v=\int_{\text {volume }}\left\{\phi(\boldsymbol{r}) \nabla^{2} \psi(\boldsymbol{r})+[\nabla \phi(\boldsymbol{r})] \cdot[\nabla \psi(\boldsymbol{r})]\right\} \mathrm{d} v .
$$

This completes the proof of Green's first identity.

