Problem 12-18) From Problem 34, part (b), we have $\boldsymbol{\nabla} \cdot(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A})-\boldsymbol{A} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})$. Replacing \boldsymbol{B}, which, in general, is a function of position \boldsymbol{r}, with the constant vector \boldsymbol{C}, makes the second curl on the right-hand side of the above identity to vanish. We will then have $\boldsymbol{\nabla} \cdot(\boldsymbol{A} \times \boldsymbol{C})=\boldsymbol{C} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A})$. Applying Gauss's theorem to the left-hand-side of this equation, we find

$$
\begin{equation*}
\int_{\text {volume }} \boldsymbol{\nabla} \cdot(\boldsymbol{A} \times \boldsymbol{C}) \mathrm{d} v=\oint_{\text {surface }}[\boldsymbol{A}(\boldsymbol{r}) \times \boldsymbol{C}] \cdot \mathrm{d} \boldsymbol{s}=-\oint_{\text {surface }}[\boldsymbol{A}(\boldsymbol{r}) \times \mathrm{d} \boldsymbol{s}] \cdot \boldsymbol{C}=-\boldsymbol{C} \cdot \oint_{\text {surface }} \boldsymbol{A}(\boldsymbol{r}) \times \mathrm{d} \boldsymbol{s} \tag{1}
\end{equation*}
$$

On the right-hand-side, the volume integral may be somewhat simplified, as follows:

$$
\begin{equation*}
\int_{\text {volume }} \boldsymbol{C} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A}) \mathrm{d} \boldsymbol{v}=\boldsymbol{C} \cdot \int_{\text {volume }} \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}) \mathrm{d} \boldsymbol{v} \tag{2}
\end{equation*}
$$

The above expressions are valid for any (arbitrary) constant vector \boldsymbol{C} and, moreover, they are equal to each other. We conclude that the coefficients of \boldsymbol{C} on the right-hand-sides of Eqs.(1) and (2) must be the same, that is, $\int_{\text {volume }} \nabla \times \boldsymbol{A}(\boldsymbol{r}) \mathrm{d} \boldsymbol{v}=-\oint_{\text {surface }} \boldsymbol{A}(\boldsymbol{r}) \times \mathrm{d} \boldsymbol{s}$.

