Problem 12-17) From Problem 34, part (a), we have $\boldsymbol{\nabla} \cdot(\psi \boldsymbol{A})=(\boldsymbol{\nabla} \psi) \cdot \boldsymbol{A}+\psi \boldsymbol{\nabla} \cdot \boldsymbol{A}$. Replacing $\boldsymbol{A}$, which, in general, is a function of position $\boldsymbol{r}$, with the constant vector $\boldsymbol{C}$, makes the divergence term on the right-hand side of the above identity to vanish. We will then have $\boldsymbol{\nabla} \cdot(\psi \boldsymbol{C})=(\boldsymbol{\nabla} \psi) \cdot \boldsymbol{C}$. Applying Gauss's theorem to the left-hand-side of the above equation, we find

$$
\begin{equation*}
\int_{\text {volume }} \nabla \cdot(\psi \boldsymbol{C}) \mathrm{d} v=\oint_{\text {surface }} \psi(\boldsymbol{r}) \boldsymbol{C} \cdot \mathrm{d} \boldsymbol{s}=\boldsymbol{C} \cdot \oint_{\text {surface }} \psi(\boldsymbol{r}) \mathrm{d} \boldsymbol{s} . \tag{1}
\end{equation*}
$$

On the right-hand-side, the volume integral may be somewhat simplified, as follows:

$$
\begin{equation*}
\int_{\text {volume }}(\nabla \psi) \cdot \boldsymbol{C} \mathrm{d} \boldsymbol{v}=\boldsymbol{C} \cdot \int_{\text {volume }} \nabla \psi(\boldsymbol{r}) \mathrm{d} \boldsymbol{v} \tag{2}
\end{equation*}
$$

The above expressions are valid for any (arbitrary) constant vector $\boldsymbol{C}$ and, moreover, they are equal to each other. We conclude that the coefficients of $\boldsymbol{C}$ on the right-hand-sides of Eqs.(1) and (2) must be the same, that is, $\int_{\text {volume }} \nabla \psi(\boldsymbol{r}) \mathrm{d} \boldsymbol{v}=\oint_{\text {surface }} \psi(\boldsymbol{r}) \mathrm{d} \boldsymbol{s}$.

