Problem 12-6) Consider the projection of \boldsymbol{B} onto the unitvector $\boldsymbol{A} /|\boldsymbol{A}|$, that is,

$$
\frac{\boldsymbol{A} \cdot \boldsymbol{B}}{|\boldsymbol{A}|}=\frac{|\boldsymbol{A}||\boldsymbol{B}| \cos \theta}{|\boldsymbol{A}|}=|\boldsymbol{B}| \cos \theta \text {. }
$$

Since the unit-vector $\boldsymbol{A} /|\boldsymbol{A}|$ is aligned with \boldsymbol{A}, the vector $\left(\frac{\boldsymbol{A} \cdot \boldsymbol{B}}{|\boldsymbol{A}|}\right) \frac{\boldsymbol{A}}{|\boldsymbol{A}|}$ has length $|\boldsymbol{B}| \cos \theta$ and is parallel to \boldsymbol{A}; in other
 words, it is the "shadow" of \boldsymbol{B} on \boldsymbol{A}. When this shadow projection is removed (i.e., subtracted) from \boldsymbol{B}, what remains is \boldsymbol{C}, which is perpendicular to \boldsymbol{A}. This can be shown directly, as follows:

$$
A \cdot C=A \cdot\left(B-\frac{A \cdot B}{|A|^{2}} A\right)=(A \cdot B)-\frac{A \cdot B}{|A|^{2}}(A \cdot A)
$$

But $\boldsymbol{A} \cdot \boldsymbol{A}=|\boldsymbol{A}|^{2}$; therefore, $\boldsymbol{A} \cdot \boldsymbol{C}=\boldsymbol{A} \cdot \boldsymbol{B}-\boldsymbol{A} \cdot \boldsymbol{B}=0$, which implies that the angle between \boldsymbol{A} and \boldsymbol{C} is 90°, that is, \boldsymbol{A} and \boldsymbol{C} are orthogonal to each other.

