Problem 12-6) Consider the projection of \boldsymbol{B} onto the unit-vector $\boldsymbol{A}/|\boldsymbol{A}|$, that is,

$$\frac{A \cdot B}{|A|} = \frac{|A| |B| \cos \theta}{|A|} = |B| \cos \theta.$$

Since the unit-vector A/|A| is aligned with A, the vector $\left(\frac{A \cdot B}{|A|}\right) \frac{A}{|A|}$ has length $|B| \cos \theta$ and is parallel to A; in other

words, it is the "shadow" of B on A. When this shadow projection is removed (i.e., subtracted) from B, what remains is C, which is perpendicular to A. This can be shown directly, as follows:

$$A \cdot C = A \cdot \left(B - \frac{A \cdot B}{|A|^2} A\right) = (A \cdot B) - \frac{A \cdot B}{|A|^2} (A \cdot A).$$

But $\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2$; therefore, $\mathbf{A} \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{B} - \mathbf{A} \cdot \mathbf{B} = 0$, which implies that the angle between \mathbf{A} and \mathbf{C} is 90°, that is, \mathbf{A} and \mathbf{C} are orthogonal to each other.