Problem 12-3) The cross-product $\boldsymbol{A} \times \boldsymbol{B}$ has a magnitude equal to the area of the base of the parallel-piped, and is perpendicular to this base. Dot-multiplication with \boldsymbol{C} then yields the product of the base area with the projection of \boldsymbol{C} on the normal to the base (i.e., the height of the parallel-piped). The product of the height and the base area is thus equal to the volume.
$(\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \times \boldsymbol{C})=\boldsymbol{B} \cdot(\boldsymbol{C} \times \boldsymbol{A})$ because all three combinations represent the volume of the same parallel-piped. Note that the volume calculated in this way may have a minus sign and so the order of cross-multiplication is important.

