Solution to Problem 18) Let *A* be a square matrix whose rows are orthonormal vectors. Then $AA^{*T} = I$, simply because each column of A^{*T} is the conjugate transpose of a row of *A*. This makes A^{*T} the inverse of *A*, that is, $A^{*T} = A^{-1}$. (In other words, *A* is unitary.) However, the inverse matrix has the property that $AA^{-1} = A^{-1}A = I$. Consequently, $A^{*T}A = I$. The later identity shows that the columns of *A* are orthonormal vectors as well.

As a special case, consider the 2×2 *ABCD* matrix, whose rows (*A B*) and (*C D*) are assumed to be orthonormal. We thus have

$$|A|^{2} + |B|^{2} = |C|^{2} + |D|^{2} = 1,$$
(1a)

$$AC^* + BD^* = 0. \tag{1b}$$

The latter equation yields $A/B = -(D/C)^*$, that is,

$$(|A|/|B|) \exp[i(\varphi_A - \varphi_B)] = (|D|/|C|) \exp[i(\varphi_C - \varphi_D \pm \pi)].$$
(2)

Given that Eq.(1a) may be written as $|B|^2[(|A|/|B|)^2 + 1] = |C|^2[1+(|D|/|C|)^2]$, substitution from Eq.(2) now reveals that |B| = |C| and, consequently, that |A| = |D|. We also find from Eq.(2) that $\varphi_A + \varphi_D = \varphi_B + \varphi_C \pm \pi$.

Let us now consider the columns of the *ABCD* matrix, whose orthogonality would require that $|A|^2 + |C|^2 = |B|^2 + |D|^2 = 1$ and $AB^* + CD^* = 0$. Since |B| = |C|, the first of these relations is equivalent to Eq.(1a). As for the second relation, its satisfaction would require that $(|A|/|C|) \exp[i(\varphi_A - \varphi_C)] = (|D|/|B|) \exp[i(\varphi_B - \varphi_D \pm \pi)]$. This, however, is guaranteed because it is already established that |B| = |C|, |A| = |D|, and $\varphi_A + \varphi_D = \varphi_B + \varphi_C \pm \pi$.