Solution to Problem 18) Let A be a square matrix whose rows are orthonormal vectors. Then $A A^{* T}=I$, simply because each column of $A^{* T}$ is the conjugate transpose of a row of A. This makes $A^{* T}$ the inverse of A, that is, $A^{* T}=A^{-1}$. (In other words, A is unitary.) However, the inverse matrix has the property that $A A^{-1}=A^{-1} A=I$. Consequently, $A^{* T} A=I$. The later identity shows that the columns of A are orthonormal vectors as well. As a special case, consider the $2 \times 2 A B C D$ matrix, whose rows $\left(\begin{array}{ll}A & B\end{array}\right)$ and $\left(\begin{array}{ll}C & D\end{array}\right)$ are assumed to be orthonormal. We thus have

$$
\begin{gather*}
|A|^{2}+|B|^{2}=|C|^{2}+|D|^{2}=1, \tag{1a}\\
A C^{*}+B D^{*}=0 . \tag{1b}
\end{gather*}
$$

The latter equation yields $A / B=-(D / C)^{*}$, that is,

$$
\begin{equation*}
(|A| /|B|) \exp \left[\mathrm{i}\left(\varphi_{A}-\varphi_{B}\right)\right]=(|D| /|C|) \exp \left[\mathrm{i}\left(\varphi_{C}-\varphi_{D} \pm \pi\right)\right] \tag{2}
\end{equation*}
$$

Given that Eq.(1a) may be written as $|B|^{2}\left[(|A| /|B|)^{2}+1\right]=|C|^{2}\left[1+(|D| /|C|)^{2}\right]$, substitution from Eq.(2) now reveals that $|B|=|C|$ and, consequently, that $|A|=|D|$. We also find from Eq.(2) that $\varphi_{A}+\varphi_{D}=\varphi_{B}+\varphi_{C} \pm \pi$.

Let us now consider the columns of the $A B C D$ matrix, whose orthogonality would require that $|A|^{2}+|C|^{2}=|B|^{2}+|D|^{2}=1$ and $A B^{*}+C D^{*}=0$. Since $|B|=|C|$, the first of these relations is equivalent to Eq.(1a). As for the second relation, its satisfaction would require that $(|A| /|C|) \exp \left[\mathrm{i}\left(\varphi_{A}-\varphi_{C}\right)\right]=(|D| /|B|) \exp \left[\mathrm{i}\left(\varphi_{B}-\varphi_{D} \pm \pi\right)\right]$. This, however, is guaranteed because it is already established that $|B|=|C|,|A|=|D|$, and $\varphi_{A}+\varphi_{D}=\varphi_{B}+\varphi_{C} \pm \pi$.

