Solution to Problem 17) Given that a unitary matrix A can always be diagonalized with the aid of a unitary matrix S, denoting the degenerate eigen-value of A by λ, we will have

$$
A=S \Lambda S^{* T}=S\left(\begin{array}{ll}
\lambda & 0 \tag{1}\\
0 & \lambda
\end{array}\right) S^{* T}=\lambda S I S^{* T}=\lambda S S^{* T}=\lambda I=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right) .
$$

Now, since the eigen-values of unitary matrices must be on the unit-circle in the complex-plane, the single eigen-value of A is given by $\lambda=\exp (\mathrm{i} \varphi)$. Consequently, the only 2×2 unitary matrices with degenerate eigen-values are in the form of $\exp (\mathrm{i} \varphi) I$.

An alternative approach to solving this problem is to start with an arbitrary 2×2 $A B C D$ matrix, then impose the unitary requirements on its four (generally complex) elements, as follows:

$$
\left(\begin{array}{ll}
A & B \tag{2}\\
C & D
\end{array}\right)\left(\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right)=\left(\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Equating the individual elements of the above matrices now yields

$$
\begin{gather*}
|A|^{2}+|B|^{2}=|C|^{2}+|D|^{2}=|A|^{2}+|C|^{2}=|B|^{2}+|D|^{2}=1, \tag{3a}\\
A C^{*}+B D^{*}=A B^{*}+C D^{*}=0 . \tag{3b}
\end{gather*}
$$

The first of the above equations requires that $|A|=|D|$ and $|B|=|C|$. The second equation, written in terms of the magnitudes and phase-angles of the four matrix elements demands that $|A||C| \exp \left[\mathrm{i}\left(\varphi_{A}-\varphi_{C}\right)\right]=-|B||D| \exp \left[\mathrm{i}\left(\varphi_{B}-\varphi_{D}\right)\right]$, which, in light of the first set of requirements, becomes $\varphi_{A}+\varphi_{D}=\varphi_{B}+\varphi_{C} \pm \pi$. The second half of Eq.(3b) imposes the same constraint on the phase-angles as the first half of the equation. All in all, the $A B C D$ matrix is found to be unitary if it satisfies the following constraints:

$$
\begin{equation*}
|A|=|D|, \quad|B|=|C|, \quad|A|^{2}+|B|^{2}=1, \quad \varphi_{A}+\varphi_{D}=\varphi_{B}+\varphi_{C} \pm \pi . \tag{4}
\end{equation*}
$$

Digression: It is not necessary to rely on both parts of Eq.(2) to arrive at Eq.(4). In fact, the first half of Eq.(3b) requires that $|A / B| \exp \left[\mathrm{i}\left(\varphi_{A}-\varphi_{B}\right)\right]=|D / C| \exp \left[\mathrm{i}\left(\varphi_{C}-\varphi_{D} \pm \pi\right)\right]$, while the first half of Eq.(3a) demands that $|B|^{2}\left(|A / B|^{2}+1\right)=|C|^{2}\left(1+|D / C|^{2}\right)=1$. Combination of these equations leads to Eq.(4).

We now write the characteristic equation of the $A B C D$ matrix in order to determine the conditions under which the eigen-values are degenerate. We will have

$$
\left|\begin{array}{cc}
A-\lambda & B \tag{5}\\
C & D-\lambda
\end{array}\right|=\lambda^{2}-(A+D) \lambda+(A D-B C)=0
$$

The eigen-value degeneracy occurs when $(A+D)^{2}-4(A D-B C)=0$, a condition that simplifies to $(A-D)^{2}+4 B C=0$. Substitution from Eq.(4) now yields

$$
\begin{align*}
(A-D)^{2}+4 B C & =|A|^{2} \exp \left[\mathrm{i}\left(\varphi_{A}+\varphi_{D}\right)\right]\left\{2 \mathrm{i} \sin \left[\left(\varphi_{A}-\varphi_{D}\right) / 2\right]\right\}^{2}+4|B|^{2} \exp \left[\mathrm{i}\left(\varphi_{B}+\varphi_{C}\right)\right] \\
& =4\left\{|A|^{2} \sin ^{2}\left[\left(\varphi_{A}-\varphi_{D}\right) / 2\right]+|B|^{2}\right\} \exp \left[\mathrm{i}\left(\varphi_{B}+\varphi_{C}\right)\right]=0 \tag{6}
\end{align*}
$$

Equation (6) is satisfied when $|B|=0$ and $\varphi_{A}=\varphi_{D}$. Together with Eq.(4), this result implies that the eigen-values of the unitary $A B C D$ matrix will be degenerate when $B=C=0$ and $A=D=\exp (\mathrm{i} \varphi)$.

