Solution to Problem 16) a) The two homogeneous $1^{\text {st }}$ order linear ODEs are $f^{\prime}(t)$ $g(t)=0$ and $g^{\prime}(t)+\gamma g(t)+\omega_{0}^{2} f(t)=\operatorname{step}(t)$. Prior to commencement of external excitation by the step function at $t=0$, i.e., during the interval $t<0$, the system is dormant, meaning that both the position $f(t)$ and the velocity $g(t)$ of the oscillator are zero. This observation then dictates the initial conditions of the system at $t=0^{+}$as $f\left(0^{+}\right)=f\left(0^{-}\right)=0$ and $g\left(0^{+}\right)=g\left(0^{-}\right)=0$. This is because any discontinuity (or jump) in either $f(t)$ or $g(t)$ at $t=0$ causes the appearance of a δ-function on the left-hand-side of the governing equation, which is not compensated by a corresponding δ function on the right-hand side.

To solve the above coupled pair of $1^{\text {st }}$ order differential equations during the time interval $t \geq 0$, we use the fact that $\operatorname{step}(t)=1$ for $t>0$, then rewrite the governing equations in matrix form, as follows:

$$
\left[\begin{array}{ll}
1 & 0 \tag{1}\\
0 & 1
\end{array}\right]\left[\begin{array}{l}
f^{\prime}(t) \\
g^{\prime}(t)
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
\omega_{0}^{2} & \gamma
\end{array}\right]\left[\begin{array}{l}
f(t) \\
g(t)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Comparing Eq.(1) with Eq.(30) of Sec.10, we see that $F(t)=\left[\begin{array}{c}f(t) \\ g(t)\end{array}\right], A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, $B=\left[\begin{array}{cc}0 & -1 \\ \omega_{0}^{2} & \gamma\end{array}\right]$, and $C=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Consequently,

$$
\begin{equation*}
F(t)=\left(B^{-1} C\right)+\exp \left(-A^{-1} B t\right) H_{0}, \quad(\text { for } t \geq 0) \tag{2}
\end{equation*}
$$

We now find $B^{-1} C=\left[\begin{array}{cc}\gamma / \omega_{0}^{2} & 1 / \omega_{0}^{2} \\ -1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}1 / \omega_{0}^{2} \\ 0\end{array}\right]$. Also, since $A^{-1}=I$, we only need to diagonalize the matrix B in order to find the exponential function $\exp \left(-A^{-1} B t\right)$. Diagonalization of B requires solving the characteristic equation to find the eigen-values $\lambda_{1,2}$, followed by solving the equation $B V=\lambda V$ for each λ in order to find the eigenvectors $V_{1,2}$. We thus write

$$
\begin{align*}
& |B-\lambda I|=\left|\begin{array}{cc}
0-\lambda & -1 \\
\omega_{0}^{2} & \gamma-\lambda
\end{array}\right|=\lambda^{2}-\gamma \lambda+\omega_{0}^{2}=0 \rightarrow \lambda_{1,2}=1 / 2 \gamma \pm \sqrt{1 / 4 \gamma^{2}-\omega_{0}^{2}} \tag{3}\\
& (B-\lambda I) V=0 \rightarrow\left[\begin{array}{cc}
0-\lambda & -1 \\
\omega_{0}^{2} & \gamma-\lambda
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0 \rightarrow v_{2}=-\lambda v_{1} \rightarrow V=\left[\begin{array}{c}
1 \\
-\lambda
\end{array}\right] v_{1} . \tag{4}
\end{align*}
$$

Considering that v_{1} is arbitrary, we set it equal to 1 , then form the matrix \tilde{V} whose columns are the two eigen-vectors of B, namely,

$$
\tilde{V}=\left[\begin{array}{cc}
1 & 1 \tag{5}\\
-\lambda_{1} & -\lambda_{2}
\end{array}\right] ; \quad \quad \tilde{V}^{-1}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
-\lambda_{2} & -1 \\
\lambda_{1} & 1
\end{array}\right] .
$$

The matrix $\exp \left(-A^{-1} B t\right)$ is thus found to be

$$
\begin{aligned}
\exp \left(-A^{-1} B t\right) & =\exp (-B t)=\tilde{V} \exp (-\Lambda t) \tilde{V}^{-1} \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
1 & 1 \\
-\lambda_{1} & -\lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
e^{-\lambda_{1} t} & 0 \\
0 & e^{-\lambda_{2} t}
\end{array}\right]\left[\begin{array}{cc}
-\lambda_{2} & -1 \\
\lambda_{1} & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
1 & 1 \\
-\lambda_{1} & -\lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
-\lambda_{2} e^{-\lambda_{1} t} & -e^{-\lambda_{1} t} \\
\lambda_{1} e^{-\lambda_{2} t} & e^{-\lambda_{2} t}
\end{array}\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} e^{-\lambda_{2} t}-\lambda_{2} e^{-\lambda_{1} t} & e^{-\lambda_{2} t}-e^{-\lambda_{1} t} \\
\lambda_{1} \lambda_{2}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right) & \lambda_{1} e^{-\lambda_{1} t}-\lambda_{2} e^{-\lambda_{2} t}
\end{array}\right] . \tag{6}
\end{align*}
$$

Returning now to Eq.(2), and recalling that the initial conditions at $t=0^{+}$are $f\left(0^{+}\right)=0$ and $g\left(0^{+}\right)=0$, the coefficient vector H_{0} can be determined as follows:

$$
F\left(0^{+}\right)=\left(B^{-1} C\right)+H_{0} \quad \rightarrow \quad H_{0}=\left[\begin{array}{l}
h_{01} \tag{7}\\
h_{02}
\end{array}\right]=\left[\begin{array}{l}
f\left(0^{+}\right) \\
g\left(0^{+}\right)
\end{array}\right]-\left[\begin{array}{c}
1 / \omega_{0}^{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / \omega_{0}^{2} \\
0
\end{array}\right]
$$

The complete solution of the coupled pair of differential equations for $t \geq 0$ is thus found from Eq.(2), after substitutions for $B^{-1} C$ and also from Eqs.(6) and (7), to be

$$
\begin{align*}
f(t) & =\frac{1}{\omega_{0}^{2}}-\frac{\lambda_{1} \exp \left(-\lambda_{2} t\right)-\lambda_{2} \exp \left(-\lambda_{1} t\right)}{\left(\lambda_{1}-\lambda_{2}\right) \omega_{0}^{2}}, \tag{8a}\\
g(t) & =-\frac{\lambda_{1} \lambda_{2}\left[\exp \left(-\lambda_{1} t\right)-\exp \left(-\lambda_{2} t\right)\right]}{\left(\lambda_{1}-\lambda_{2}\right) \omega_{0}^{2}} . \tag{8b}
\end{align*}
$$

Note that $g(t)=f^{\prime}(t)$, as expected.
b) In the under-damped case $\left(\gamma<2 \omega_{0}\right)$, Eq.(3) yields $\lambda_{1,2}=1 / 2 \gamma\left[1 \pm \mathrm{i} \sqrt{\left(2 \omega_{0} / \gamma\right)^{2}-1}\right]$. In this case, Eq.(8a) may be streamlined as follows:

$$
f(t)=\frac{\operatorname{step}(t)}{\omega_{0}^{2}}\left\{1-\exp (-1 / 2 \gamma t)\left(\cos \left[1 / 2 \gamma \sqrt{\left(2 \omega_{0} / \gamma\right)^{2}-1} t\right]+\frac{\sin \left[1 / 2 \gamma \sqrt{\left(2 \omega_{0} / \gamma\right)^{2}-1} t\right]}{\sqrt{\left(2 \omega_{0} / \gamma\right)^{2}-1}}\right)\right\} .
$$

In the over-damped case $\left(\gamma>2 \omega_{0}\right)$, Eq.(3) yields $\lambda_{1,2}=1 / 2 \gamma\left[1 \pm \sqrt{1-\left(2 \omega_{0} / \gamma\right)^{2}}\right]$. In this case, Eq.(8a) becomes

$$
f(t)=\frac{\operatorname{step}(t)}{\omega_{0}^{2}}\left\{1-\exp (-1 / 2 \gamma t)\left(\cosh \left[1 / 2 \gamma \sqrt{1-\left(2 \omega_{0} / \gamma\right)^{2}} t\right]+\frac{\sinh \left[1 / 2 \gamma \sqrt{1-\left(2 \omega_{0} / \gamma\right)^{2}} t\right]}{\sqrt{1-\left(2 \omega_{0} / \gamma\right)^{2}}}\right)\right\} .
$$

In the case of critical damping, $\gamma \rightarrow 2 \omega_{0}$ and, therefore, $\lambda_{1} \rightarrow \lambda_{2} \rightarrow 1 / 2 \gamma$. We must then eliminate the term $\left(\lambda_{1}-\lambda_{2}\right)$ in the denominators of $f(t)$ and $g(t)$ in Eqs.(8), which is causing these functions to diverge. This is done by factoring out $\exp \left(-\lambda_{1} t\right)$, then approximating the remaining $\exp \left[\left(\lambda_{1}-\lambda_{2}\right) t\right]$ by $1+\left(\lambda_{1}-\lambda_{2}\right) t$, as follows:

$$
\begin{aligned}
f(t) & =\frac{\operatorname{step}(t)}{\omega_{0}^{2}}\left\{1-\frac{\lambda_{1} \exp \left[\left(\lambda_{1}-\lambda_{2}\right) t\right]-\lambda_{2}}{\left(\lambda_{1}-\lambda_{2}\right)} \exp \left(-\lambda_{1} t\right)\right\} \\
& \cong \frac{\operatorname{step}(t)}{\omega_{0}^{2}}\left\{1-\frac{\lambda_{1}\left[1+\left(\lambda_{1}-\lambda_{2}\right) t\right]-\lambda_{2}}{\left(\lambda_{1}-\lambda_{2}\right)} \exp \left(-\lambda_{1} t\right)\right\} \\
& =\frac{\operatorname{step}(t)}{\omega_{0}^{2}}\left[1-\frac{\left(\lambda_{1}-\lambda_{2}\right)+\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right) t}{\left(\lambda_{1}-\lambda_{2}\right)} \exp \left(-\lambda_{1} t\right)\right] \\
& =\frac{\operatorname{step}(t)}{\omega_{0}^{2}}\left[1-\left(1+\lambda_{1} t\right) \exp \left(-\lambda_{1} t\right)\right]=\frac{\operatorname{step}(t)}{\omega_{0}^{2}}[1-(1+1 / 2 \gamma t) \exp (-1 / 2 \gamma t)] .
\end{aligned}
$$

$$
\begin{aligned}
g(t) & =\frac{\lambda_{1} \lambda_{2}\left\{\exp \left[\left(\lambda_{1}-\lambda_{2}\right) t\right]-1\right\}}{\left(\lambda_{1}-\lambda_{2}\right) \omega_{0}^{2}} \exp \left(-\lambda_{1} t\right) \operatorname{step}(t) \\
& \cong \frac{\lambda_{1} \lambda_{2}\left[1+\left(\lambda_{1}-\lambda_{2}\right) t-1\right]}{\left(\lambda_{1}-\lambda_{2}\right) \omega_{0}^{2}} \exp \left(-\lambda_{1} t\right) \operatorname{step}(t) \\
& =\frac{\lambda_{1} \lambda_{2} t}{\omega_{0}^{2}} \exp \left(-\lambda_{1} t\right) \operatorname{step}(t)=\left(\lambda_{1} / \omega_{0}\right)^{2} t \exp \left(-\lambda_{1} t\right) \operatorname{step}(t) \\
& =\left(\gamma / 2 \omega_{0}\right)^{2} t \exp (-1 / 2 \gamma t) \operatorname{step}(t)=t \exp (-1 / 2 \gamma t) \operatorname{step}(t) .
\end{aligned}
$$

