Solution to Problem 15) To raise a diagonalizable matrix $A=\tilde{V} \Lambda \tilde{V}^{-1}$ to the power of the rational number m / n (preferably, with the ratio reduced, so that m and n have no common factors), one must first find all the matrices $A^{1 / n}=\tilde{V} \Lambda^{1 / n} \tilde{V}^{-1}$, where the matrix $\Lambda^{1 / n}$ is a diagonal matrix whose diagonal elements are $\lambda_{k}^{1 / n}$. Here λ_{k} is the $k^{\text {th }}$ eigen-value of A. (Assuming that A has $v \leq N$ nonzero eigen-values, the total number of matrices $A^{1 / n}$ will be n^{ν}.) Afterward, each matrix $A^{1 / n}$ must be raised to the power of m in order to arrive at one of the matrices $A^{m / n}$.

For the general case of A^{α}, where α could be any real or complex number, we now define $A^{\alpha}=\tilde{V} \Lambda^{\alpha} \tilde{V}^{-1}$, with the diagonal elements of Λ^{α} being $\lambda_{k}^{\alpha}=\exp \left(\alpha \ln \lambda_{k}\right)$. Recalling that $\ln \lambda_{k}=\ln \left|\lambda_{k}\right|+\mathrm{i}\left(\varphi_{k}+2 \mu \pi\right)$, where μ is any arbitrary integer (positive, zero, or negative), it is clear that, depending on the value of α, the matrices A^{α} could be finite or infinite in number.

