Solution to Problem 14) By definition, the square root of the matrix A must satisfy the relation $\sqrt{A} \times \sqrt{A}=A$. Given that A is diagonalizable as $A=\tilde{V} \Lambda \tilde{V}^{-1}$, we define the square root of A as follows:

$$
\sqrt{A}=\tilde{V} \Lambda^{1 / 2} \tilde{V}^{-1}
$$

Here $\Lambda^{1 / 2}$ is a diagonal matrix whose elements are the square roots of the eigen-values λ_{n} of the matrix A. It follows that

$$
\begin{aligned}
\sqrt{A} \times \sqrt{A} & =\left(\tilde{V} \Lambda^{1 / 2} \tilde{V}^{-1}\right)\left(\tilde{V} \Lambda^{1 / 2} \tilde{V}^{-1}\right)=\tilde{V} \Lambda^{1 / 2}\left(\tilde{V}^{-1} \tilde{V}\right) \Lambda^{1 / 2} \tilde{V}^{-1} \\
& =\tilde{V} \Lambda^{1 / 2} I \Lambda^{1 / 2} \tilde{V}^{-1}=\tilde{V} \Lambda^{1 / 2} \Lambda^{1 / 2} \tilde{V}^{-1}=\tilde{V} \Lambda \tilde{V}^{-1}=A .
\end{aligned}
$$

In general, each eigen-value $\lambda_{n}=\left|\lambda_{n}\right| \exp \left(\mathrm{i} \varphi_{n}\right)$ is a complex number whose two square-roots are $\lambda_{n}^{1 / 2}= \pm \sqrt{\left|\lambda_{n}\right|} \exp \left(\mathrm{i} \varphi_{n} / 2\right)$. Thus, there are two roots for each eigenvalue of A, unless $\lambda_{n}=0$, in which case there will be a single root only. Assuming that A has m non-zero eigen-values, the total number of matrices that can be identified as \sqrt{A} is going to be 2^{m}.

As examples, we use the following 2×2 and 3×3 matrices, both of which were diagonalized in Problem 8:

Example1:

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=1 / 2\left(\begin{array}{cc}
\mathrm{i} & -\mathrm{i} \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
-\mathrm{i} & 1 \\
\mathrm{i} & 1
\end{array}\right) . \\
\sqrt{A} & =1 / 2\left(\begin{array}{cc}
\mathrm{i} & -\mathrm{i} \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\pm e^{\mathrm{i} \pi / 4} & 0 \\
0 & \pm e^{-\mathrm{i} \pi / 4}
\end{array}\right)\left(\begin{array}{cc}
-\mathrm{i} & 1 \\
\mathrm{i} & 1
\end{array}\right) . \\
\rightarrow \quad \sqrt{A} & = \pm \frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), \quad \sqrt{A}= \pm \frac{\mathrm{i} \sqrt{2}}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& B=\left(\begin{array}{ccc}
1 & 0 & \mathrm{i} \\
0 & 2 & 0 \\
-\mathrm{i} & 0 & 1
\end{array}\right)=1 / 2\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
\mathrm{i} & -\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -\mathrm{i} \\
1 & -2 & \mathrm{i} \\
0 & 2 & 0
\end{array}\right) . \\
& \sqrt{B}=1 / 2\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
\mathrm{i} & -\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \pm \sqrt{2} & 0 \\
0 & 0 & \pm \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -\mathrm{i} \\
1 & -2 & \mathrm{i} \\
0 & 2 & 0
\end{array}\right) . \\
& \rightarrow \sqrt{B}= \pm \frac{\sqrt{2}}{2}\left(\begin{array}{ccc}
1 & 0 & \mathrm{i} \\
0 & 2 & 0 \\
-\mathrm{i} & 0 & 1
\end{array}\right), \quad \sqrt{B}= \pm \frac{\sqrt{2}}{2}\left(\begin{array}{ccc}
1 & -4 & \mathrm{i} \\
0 & -2 & 0 \\
-\mathrm{i} & 4 \mathrm{i} & 1
\end{array}\right) .
\end{aligned}
$$

