
Solution to Problem 14) By definition, the square root of the matrix 𝐴𝐴 must satisfy the 
relation √𝐴𝐴 × √𝐴𝐴 = 𝐴𝐴. Given that 𝐴𝐴 is diagonalizable as 𝐴𝐴 = 𝑉𝑉�𝛬𝛬𝑉𝑉�−1, we define the 
square root of 𝐴𝐴 as follows: 

 √𝐴𝐴 = 𝑉𝑉�𝛬𝛬½𝑉𝑉�−1. 

Here 𝛬𝛬½ is a diagonal matrix whose elements are the square roots of the eigen-values 
𝜆𝜆𝑛𝑛 of the matrix 𝐴𝐴. It follows that 

 √𝐴𝐴 × √𝐴𝐴 = (𝑉𝑉�𝛬𝛬½𝑉𝑉�−1)(𝑉𝑉�𝛬𝛬½𝑉𝑉�−1) = 𝑉𝑉�𝛬𝛬½(𝑉𝑉�−1𝑉𝑉�)𝛬𝛬½𝑉𝑉�−1 

 = 𝑉𝑉�𝛬𝛬½𝐼𝐼𝛬𝛬½𝑉𝑉�−1 = 𝑉𝑉�𝛬𝛬½𝛬𝛬½𝑉𝑉�−1 = 𝑉𝑉�𝛬𝛬𝑉𝑉�−1 = 𝐴𝐴. 

In general, each eigen-value 𝜆𝜆𝑛𝑛 = |𝜆𝜆𝑛𝑛| exp(i𝜑𝜑𝑛𝑛) is a complex number whose two 
square-roots are 𝜆𝜆𝑛𝑛½ = ±�|𝜆𝜆𝑛𝑛| exp(i𝜑𝜑𝑛𝑛 2⁄ ). Thus, there are two roots for each eigen-
value of 𝐴𝐴, unless 𝜆𝜆𝑛𝑛 = 0, in which case there will be a single root only. Assuming that 𝐴𝐴 
has 𝑚𝑚 non-zero eigen-values, the total number of matrices that can be identified as √𝐴𝐴 is 
going to be 2𝑚𝑚. 

As examples, we use the following 2 × 2 and 3 × 3 matrices, both of which were 
diagonalized in Problem 8: 
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