Solution to Problem 14) By definition, the square root of the matrix A must satisfy the
relation VA X /A = A. Given that A is diagonalizable as A = VAV, we define the
square root of A as follows:

VA =TVA*771,

Here A” is a diagonal matrix whose elements are the square roots of the eigen-values
A, of the matrix A. It follows that

VA X VA = (TA7- ) (TAAT 1) = PAA(F1P) 447
= VAPLAAT1 = PA% 427 = VAT = A,

In general, each cigen-value 4, = |1,| exp(ip,) is a complex number whose two
square-roots are A2 = +./|1,,| exp(ig,,/2). Thus, there are two roots for each eigen-
value of A, unless A4,, = 0, in which case there will be a single root only. Assuming that A
has m non-zero eigen-values, the total number of matrices that can be identified as VA is
going to be 2™.

As examples, we use the following 2 X 2 and 3 X 3 matrices, both of which were
diagonalized in Problem 8§:
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