Solution to Problem 11) A straightforward way to relate $\left(x_{0}, y_{0}\right)$ to $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)$ is to use geometric constructs and show that $x_{0}^{\prime}=x_{0} \cos \theta+y_{0} \sin \theta$ and $y_{0}^{\prime}=y_{0} \cos \theta-x_{0} \sin \theta$. An alternative approach which leads to the same result is to represent the point $\left(x_{0}, y_{0}\right)$ by the complex number $x_{0}+\mathrm{i} y_{0}$ in the complex $x y$-plane. The rotation of the Cartesian $x y$ coordinate system through the angle θ then appears as an opposite rotation of the point $x_{0}+\mathrm{i} y_{0}$ through the angle $-\theta$. Thus, in the new $x^{\prime} y^{\prime}$ coordinate system, the same point (x_{0}, y_{0}) may be represented by

$$
\begin{aligned}
x_{0}^{\prime}+\mathrm{i} y_{0}^{\prime}=\left(x_{0}+\mathrm{i} y_{0}\right) \exp (-\mathrm{i} \theta) & =\left(x_{0}+\mathrm{i} y_{0}\right)(\cos \theta-\mathrm{i} \sin \theta) \\
& =\left(x_{0} \cos \theta+y_{0} \sin \theta\right)+\mathrm{i}\left(y_{0} \cos \theta-x_{0} \sin \theta\right)
\end{aligned}
$$

Therefore, rotation of the $x y$ system through an angle θ requires multiplication of the coordinates $\left(x_{0}, y_{0}\right)$ of an arbitrary point in the $x y$-plane by a rotation matrix, as follows:

$$
\binom{x_{0}^{\prime}}{y_{0}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x_{0}}{y_{0}} .
$$

To find the eigen-values of the rotation matrix appearing in the above equation, we must solve its characteristic equation, namely,

$$
\begin{aligned}
& \left|\begin{array}{cc}
\cos \theta-\lambda & \sin \theta \\
-\sin \theta & \cos \theta-\lambda
\end{array}\right|=\lambda^{2}-2 \lambda \cos \theta+1=0 \\
& \rightarrow \quad \lambda_{ \pm}=\cos \theta \pm \sqrt{\cos ^{2} \theta-1}=\cos \theta \pm \mathrm{i} \sin \theta=\exp (\pm \mathrm{i} \theta) .
\end{aligned}
$$

Subsequently, the eigen-vectors of the rotation matrix are determined as follows:

$$
\begin{gathered}
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{v_{1}}{v_{2}}=\lambda_{ \pm}\binom{v_{1}}{v_{2}} \rightarrow \quad v_{1} \cos \theta+v_{2} \sin \theta=\lambda_{ \pm} v_{1} \\
\rightarrow v_{2}=\left(\lambda_{ \pm}-\cos \theta\right) v_{1} / \sin \theta=\left(e^{ \pm \mathrm{i} \theta}-\cos \theta\right) v_{1} / \sin \theta= \pm \mathrm{i} v_{1} \rightarrow V_{ \pm}=\binom{1}{ \pm \mathrm{i}} v_{1} .
\end{gathered}
$$

Considering that v_{1} is an arbitrary constant, we set it equal to 1 , then form the matrix \tilde{V} whose columns are the above eigen-vectors V_{+}and V_{-}. The matrix \tilde{V} and its inverse \tilde{V}^{-1} are found to be

$$
\tilde{V}=\left(\begin{array}{cc}
1 & 1 \\
\mathrm{i} & -\mathrm{i}
\end{array}\right) ; \quad \tilde{V}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -\mathrm{i} \\
1 & \mathrm{i}
\end{array}\right) .
$$

Diagonalization of the rotation matrix with the aid of the eigen-vector matrices \tilde{V}, \tilde{V}^{-1}, and the eigen-values matrix Λ, finally yields

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\tilde{V} \Lambda \tilde{V}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
e^{\mathrm{i} \theta} & 0 \\
0 & e^{-\mathrm{i} \theta}
\end{array}\right)\left(\begin{array}{cc}
1 & -\mathrm{i} \\
1 & \mathrm{i}
\end{array}\right) .
$$

