Solution to Problem 10) The eigen-values of A are solutions of its characteristic equation $|A-\lambda I|=0$. If at least one solution of this $N^{\text {th }}$ order polynomial equation happens to be zero, say, $\lambda_{n}=0$, we will have $\left|A-\lambda_{n} I\right|=|A|=0$. Thus, the matrix A, whose determinant is found to be zero, cannot be inverted.

If A is diagonalizable, its determinant will be equal to the product $\lambda_{1} \lambda_{2} \cdots \lambda_{N}$ of its eigen-values. Thus, a single eigen-value of zero magnitude is sufficient to ensure that $|A|=0$, which is the necessary and sufficient condition for A to be non-invertible.

