Solution to Problem 9) Consider the 2×2 matrix $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. If the eigen-values of the matrix happen to differ from one another, the matrix will be diagonalizable. So the first requirement for failure to diagonalize is the equality of the eigen-values. The characteristic equation for this matrix is

$$
\begin{align*}
|A-\lambda I| & =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21} \\
& =\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a_{21} a_{21}=0 . \tag{1}
\end{align*}
$$

The two roots of the characteristic equation will coincide if and only if

$$
\begin{equation*}
\left(a_{11}+a_{22}\right)^{2}-4\left(a_{11} a_{22}-a_{12} a_{21}\right)=\left(a_{11}-a_{22}\right)^{2}+4 a_{12} a_{21}=0 \tag{2}
\end{equation*}
$$

The common eigen-value will then be $\lambda_{1}=\lambda_{2}=1 / 2\left(a_{11}+a_{22}\right)$, and the corresponding eigen-vectors must satisfy the following equations:

$$
(A-\lambda I) V=\left(\begin{array}{cc}
1 / 2 a_{11}-1 / 2 a_{22} & a_{12} \tag{3}\\
a_{21} & 1 / 2 a_{22}-1 / 2 a_{11}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

We recognize the following distinct situations:
i) $a_{11}=a_{22}$. In this case, in accordance with Eq.(2), either a_{12} or a_{21} or both must vanish. If $a_{12}=0$ and $a_{21} \neq 0$, we will have a single eigen-vector $V_{1}=V_{2}=\left(\begin{array}{ll}0 & v_{2}\end{array}\right)^{T}$, in which case the matrix A cannot be diagonalized. Similarly, If $a_{12} \neq 0$ and $a_{21}=0$, the unique eigen-vector of A will be $V_{1}=V_{2}=\left(\begin{array}{ll}v_{1} & 0\end{array}\right)^{T}$, and, once again, A will not be diagonalizable. However, if $a_{12}=a_{21}=0$, then any pair of values for v_{1} and v_{2} will be allowed. The matrix A will then have two linearly independent eigen-vectors, which enable its diagonalization.
ii) $a_{11} \neq a_{22}$. In this case, in accordance with Eq.(2), neither a_{12} nor a_{21} can vanish. Equation (3) will then admit only one solution, namely,

$$
\begin{equation*}
\frac{v_{1}}{v_{2}}=\frac{2 a_{12}}{a_{22}-a_{11}}=\frac{a_{11}-a_{22}}{2 a_{21}} . \tag{4}
\end{equation*}
$$

Since the matrix A will have a single eigen-vector in this case, it cannot be diagonalized.
We conclude that a 2×2 matrix A is diagonalizable under only two circumstances: (a) When $\left(a_{11}-a_{22}\right)^{2}+4 a_{12} a_{21} \neq 0$, in which case the matrix will have a pair of distinct eigen-values, and two linearly independent eigen-vectors. (b) When $a_{11}=a_{22}$ and $a_{12}=a_{21}=0$, in which case the matrix is already in a diagonal form.

