Solution to Problem 8) Our first example is a 2×2 matrix with a single (degenerate) eigen-value and a single eigen-vector. Consequently, this matrix is not diagonalizable.

$$
\begin{gathered}
A_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left|A_{1}-\lambda I\right|=(1-\lambda)^{2}=0 \quad \rightarrow \quad \lambda_{1,2}=1 . \\
\left(A_{1}-\lambda I\right) V=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \rightarrow\left(v_{1}=\text { arbitrary, } v_{2}=0\right) \rightarrow V=\binom{1}{0} v_{1} .
\end{gathered}
$$

Our second example is another 2×2 matrix, but this one has complex elements. Again, the matrix turns out to have a single (degenerate) eigen-value and a single eigenvector. As such, this matrix is not diagonalizable.

$$
\begin{gathered}
A_{2}=\left(\begin{array}{cc}
1+\mathrm{i} & 2 \\
0 & 1+\mathrm{i}
\end{array}\right), \quad\left|A_{2}-\lambda I\right|=(1+\mathrm{i}-\lambda)^{2}=0 \quad \rightarrow \quad \lambda_{1,2}=1+\mathrm{i} . \\
\left(A_{2}-\lambda I\right) V=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \rightarrow\left(v_{1}=\text { arbitrary, } v_{2}=0\right) \rightarrow V=\binom{1}{0} v_{1} .
\end{gathered}
$$

For our third example, we pick a 3×3 matrix which has two eigen-values, one being degenerate. This matrix turns out to have only two independent eigen-vectors. Once again, there are not enough eigen-vectors to diagonalize the matrix.

$$
\begin{gathered}
A_{3}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
3 & 2 & 0 \\
4 & 0 & 5
\end{array}\right) . \\
\left|A_{3}-\lambda I\right|=(1-\lambda)(2-\lambda)(5-\lambda)+4(2-\lambda)=(2-\lambda)(3-\lambda)^{2}=0 \\
\rightarrow \lambda_{1}=2, \quad \lambda_{2}=\lambda_{3}=3 .
\end{gathered}
$$

The eigen-vector associated with λ_{1} is computed as follows:

$$
\begin{aligned}
& \quad\left(A_{3}-\lambda_{1} I\right) V_{1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
3 & 0 & 0 \\
4 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
v_{11} \\
v_{12} \\
v_{13}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \rightarrow \quad\left(v_{11}=v_{13}=0, \quad v_{12}=\text { arbitrary }\right) \quad \rightarrow \quad V_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) v_{12} .
\end{aligned}
$$

The eigen-vector associated with the degenerate eigen-values λ_{2} and λ_{3} is found to be

$$
\begin{aligned}
&\left(A_{3}-\lambda_{2} I\right) V_{2}=\left(\begin{array}{ccc}
-2 & 0 & -1 \\
3 & -1 & 0 \\
4 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
v_{21} \\
v_{22} \\
v_{23}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \rightarrow \quad\left(v_{22}=3 v_{21}, \quad v_{23}=-2 v_{21}\right) \quad \rightarrow \quad V_{2}=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) v_{21} .
\end{aligned}
$$

Our fourth example is another 2×2 matrix with real entries. Unlike the previous examples, this matrix has two non-degenerate eigen-values and, consequently, two linearly independent eigen-vectors. Below, we find both eigen-values and their associated eigen-vectors, then proceed to diagonalize the matrix.

$$
\begin{gathered}
A_{4}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad\left|A_{4}-\lambda I\right|=\lambda^{2}+1=0 \quad \rightarrow \quad \lambda_{1,2}= \pm \mathrm{i} . \\
\left(A_{4}-\lambda I\right) V=\left(\begin{array}{cc}
\mp \mathrm{i} & -1 \\
1 & \mp \mathrm{i}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \quad \rightarrow \quad v_{1}= \pm \mathrm{i} v_{2} \rightarrow V_{1,2}=\binom{ \pm \mathrm{i}}{1} v_{2} . \\
\tilde{V}=\left(\begin{array}{cc}
\mathrm{i} & -\mathrm{i} \\
1 & 1
\end{array}\right), \quad \tilde{V}^{-1}=1 / 2\left(\begin{array}{cc}
-\mathrm{i} & 1 \\
\mathrm{i} & 1
\end{array}\right), \quad \Lambda=\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right) .
\end{gathered}
$$

Finally, the diagonalized matrix A_{4} is written as follows:

$$
A_{4}=\tilde{V} \Lambda \tilde{V}^{-1}=1 / 2\left(\begin{array}{cc}
\mathrm{i} & -\mathrm{i} \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
-\mathrm{i} & 1 \\
\mathrm{i} & 1
\end{array}\right) .
$$

Our next example, once again, is a 2×2 matrix with real entries, which has a single (degenerate) eigen-value, and a single eigen-vector associated with that eigen-value. In the absence of a sufficient number of (linearly independent) eigen-vectors, the matrix cannot be diagonalized.

$$
\begin{aligned}
& A_{5}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right), \quad\left|A_{5}-\lambda I\right|=-\lambda(2-\lambda)+1=(\lambda-1)^{2}=0 \quad \rightarrow \quad \lambda_{1,2}=1 \\
& \left(A_{5}-\lambda I\right) V=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \rightarrow v_{1}=v_{2}=\text { arbitrary } \rightarrow \quad V=\binom{1}{1} v_{1} .
\end{aligned}
$$

Our final example is a 3×3 matrix with complex entries and only two eigen-values. In spite of the degeneracy, however, the matrix has three independent eigen-vectors. We compute both eigen-values and all three (linearly-independent) eigen-vectors. We then proceed to diagonalize the matrix with the aid of these eigen-values and eigen-vectors.

$$
\begin{gathered}
A_{6}=\left(\begin{array}{ccc}
1 & 0 & \mathrm{i} \\
0 & 2 & 0 \\
-\mathrm{i} & 0 & 1
\end{array}\right) . \\
\left|A_{6}-\lambda I\right|=(1-\lambda)(2-\lambda)(1-\lambda)+\mathrm{i}^{2}(2-\lambda)=(2-\lambda)\left(\lambda^{2}-2 \lambda\right)=0 . \\
\rightarrow \quad \lambda_{1}=0, \quad \lambda_{2}=\lambda_{3}=2 .
\end{gathered}
$$

The eigen-vector associated with λ_{1} is now determined as follows:

$$
\begin{aligned}
& \quad\left(A_{6}-\lambda_{1} I\right) V_{1}=\left(\begin{array}{ccc}
1 & 0 & \mathrm{i} \\
0 & 2 & 0 \\
-\mathrm{i} & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{11} \\
v_{12} \\
v_{13}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \rightarrow \quad\left(v_{13}=\mathrm{i} v_{11}, \quad v_{12}=0\right) \quad \rightarrow \quad V_{1}=\left(\begin{array}{l}
1 \\
0 \\
\mathrm{i}
\end{array}\right) v_{11} .
\end{aligned}
$$

The next step is to compute the eigen-vector(s) associated with the degenerate eigenvalues λ_{2} and λ_{3}, as follows:

$$
\begin{gathered}
\left(A_{6}-\lambda_{2} I\right) V_{2}=\left(\begin{array}{ccc}
-1 & 0 & \mathrm{i} \\
0 & 0 & 0 \\
-\mathrm{i} & 0 & -1
\end{array}\right)\left(\begin{array}{l}
v_{21} \\
v_{22} \\
v_{23}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\rightarrow\left(v_{23}=-\mathrm{i} v_{21}, \quad v_{22}=\text { arbitrary }\right) \rightarrow \quad V_{2}=\left(\begin{array}{c}
1 \\
0 \\
-\mathrm{i}
\end{array}\right) v_{21}, \quad V_{3}=\left(\begin{array}{c}
1 \\
1 \\
-\mathrm{i}
\end{array}\right) v_{22} .
\end{gathered}
$$

The matrix A_{6} is now diagonalized with the aid of the matrix of eigen-vectors, namely,

$$
\begin{gathered}
\tilde{V}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
\mathrm{i} & -\mathrm{i} & -\mathrm{i}
\end{array}\right), \quad \tilde{V}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & -\mathrm{i} \\
1 & -2 & \mathrm{i} \\
0 & 2 & 0
\end{array}\right), \quad \Lambda=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) . \\
A_{6}=\tilde{V} \Lambda \tilde{V}^{-1}=1 / 2\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
\mathrm{i} & -\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -\mathrm{i} \\
1 & -2 & \mathrm{i} \\
0 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

If need be, one can orthonormalize the eigen-vectors constituting the columns of \tilde{V}, so that the diagonalization of the Hermitian matrix A_{6} is carried out via a unitary matrix.

