Solution to Problem 7) Since the proofs for right and left eigen-vectors are essentially the same, the argument that follows considers only the right eigen-vectors.

Consider the $N \times N$ matrix A and its two (distinct) eigen-values λ_{1} and λ_{2}, whose corresponding (right) eigen-vectors are V_{1} and V_{2}. Neither vector equals zero, because, by definition, eigen-vectors are nonzero. The two vectors will be linearly dependent if and only if $V_{2}=c V_{1}$, where $c \neq 0$ is some constant. We will then have $A V_{2}=c A V_{1}$, or $\lambda_{2} V_{2}=c \lambda_{1} V_{1}$. Now, if $\lambda_{2}=0$, the preceding equation implies that $c=0$, which contradicts our initial assumption that $c \neq 0$ (recalling that $\lambda_{1} \neq 0$, since, by assumption, $\left.\lambda_{1} \neq \lambda_{2}\right)$. If $\lambda_{2} \neq 0$, then $V_{2}=\left(c \lambda_{1} / \lambda_{2}\right) V_{1}$, where the proportionality constant between V_{1} and V_{2} is now $c \lambda_{1} / \lambda_{2} \neq c$. It is thus clear that V_{1} and V_{2} must be linearly independent.

Let us now suppose that the linear combination $c_{1} V_{1}+c_{2} V_{2}$ of the first two eigenvectors, where c_{1} and c_{2} are two (generally complex-valued) constants, equals a third eigen-vector V_{3} whose distinct eigen-value is denoted by λ_{3}. We will have

$$
\begin{aligned}
A\left(c_{1} V_{1}+c_{2} V_{2}\right)=A V_{3} & \rightarrow c_{1} \lambda_{1} V_{1}+c_{2} \lambda_{2} V_{2}=\lambda_{3}\left(c_{1} V_{1}+c_{2} V_{2}\right) \\
& \rightarrow \quad c_{1}\left(\lambda_{1}-\lambda_{3}\right) V_{1}+c_{2}\left(\lambda_{2}-\lambda_{3}\right) V_{2}=0 .
\end{aligned}
$$

Considering that, by assumption, $\lambda_{1}-\lambda_{3} \neq 0$ and $\lambda_{2}-\lambda_{3} \neq 0$, the only way for the above linear combination of V_{1} and V_{2} to vanish is for both c_{1} and c_{2} to equal zero. But this would imply that $V_{3}=0$, which is not acceptable. The inevitable conclusion is that V_{3} cannot be expressed as a linear combination of V_{1} and V_{2}, which is equivalent to saying that V_{1}, V_{2}, V_{3} are linearly independent. In similar fashion, the argument is now extended to the remaining eigen-vectors $V_{4}, V_{5}, \cdots, V_{N}$, leading to the general conclusion that the eigen-vectors belonging to differing eigen-values of a square matrix are linearly independent of each other.

