Solution to Problem 3) By definition, the inverse $(A B)^{-1}$ of the product matrix $A B$ must have the following properties: (i) $(A B)^{-1}(A B)=I$, and (ii) $(A B)(A B)^{-1}=I$. Below, we verify that the product matrix $B^{-1} A^{-1}$ does, in fact, satisfy both requirements.
i) $\quad\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I$.
ii) $\quad(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I$.

Consequently, $B^{-1} A^{-1}$ it is the desired inverse $(A B)^{-1}$ of the matrix $A B$.

