Solution to Problem 1) When the product $A B$ is calculated at first, we will have

$$
\begin{equation*}
(A B)_{k m}=\sum_{l=1}^{L} A_{k l} B_{l m} . \tag{1}
\end{equation*}
$$

Subsequent multiplication of $A B$ by $C$ on the right-hand-side then yields

$$
\begin{equation*}
(A B C)_{k n}=\sum_{m=1}^{M}(A B)_{k m} C_{m n}=\sum_{m=1}^{M} \sum_{l=1}^{L}\left(A_{k l} B_{l m} C_{m n}\right) . \tag{2}
\end{equation*}
$$

In contrast, when the product $B C$ is computed at first, we find

$$
\begin{equation*}
(B C)_{l n}=\sum_{m=1}^{M} B_{l m} C_{m n} . \tag{3}
\end{equation*}
$$

Subsequent multiplication of $B C$ by $A$ on the left-hand-side then yields

$$
\begin{equation*}
(A B C)_{k n}=\sum_{l=1}^{L} A_{k l}(B C)_{l n}=\sum_{l=1}^{L} \sum_{m=1}^{M}\left(A_{k l} B_{l m} C_{m n}\right) . \tag{4}
\end{equation*}
$$

Clearly, the two double-sums appearing in Eqs.(2) and (4) are identical, as the order in which the triple-products $A_{k l} B_{l m} C_{m n}$ are added together is irrelevant. (The indices $k$ and $n$ are fixed, and the double-sum is over all possible pairs of indices $l$ and $m$. It does not matter whether $m$ is fixed initially while $l$ is being varied, or $l$ is fixed initially while $m$ is being varied. So long as all possible combinations of $l$ and $m$ are included in the double-sum, the end result will be the same.)

