Solution to Problem 5) From the defining equation $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ it is clear that the conjugate of $\Gamma(z)$ is $\Gamma(z^*)$. Of course, the above integral is valid only for the right-half of the complex z-plane, where $\operatorname{Re}(z) > 0$. However, analytic continuation of $\Gamma(z)$ to the left-half of the z-plane preserves this property, so that, in general, $\Gamma^*(z) = \Gamma(z^*)$. The only other formulas needed to prove the asserted identities are the functional relation $\Gamma(z+1) = z\Gamma(z)$, and Euler's reflection formula $\Gamma(z)\Gamma(1-z) = \pi/\sin(\pi z)$. We will then have

a)
$$|\Gamma(iy)|^2 = \Gamma(iy)\Gamma^*(iy) = \Gamma(iy)\Gamma(-iy) = \Gamma(iy)(-iy)\Gamma(-iy)/(-iy)$$

 $= \frac{\Gamma(iy)\Gamma(1-iy)}{(-iy)} = \frac{\pi}{\sin(i\pi y)(-iy)} = \frac{2i\pi}{(e^{-\pi y} - e^{\pi y})(-iy)} = \frac{\pi}{y\sinh(\pi y)}$.
b) $|\Gamma(\frac{1}{2} + iy)|^2 = \Gamma(\frac{1}{2} + iy)\Gamma^*(\frac{1}{2} + iy) = \Gamma(\frac{1}{2} + iy)\Gamma(\frac{1}{2} - iy)$
 $= \Gamma(\frac{1}{2} + iy)\Gamma(1 - \frac{1}{2} - iy) = \pi/\sin[\pi(\frac{1}{2} + iy)]$
 $= \frac{2i\pi}{\exp[i\pi(\frac{1}{2} + iy)] - \exp[-i\pi(\frac{1}{2} + iy)]} = \frac{2\pi}{\exp(-\pi y) + \exp(\pi y)} = \frac{\pi}{\cosh(\pi y)}$.
c) $\Gamma(1 + iy)\Gamma(1 - iy) = (iy)\Gamma(iy)\Gamma(1 - iy) = i\pi y/\sin(i\pi y)$
 $= 2i^2\pi y/(e^{-\pi y} - e^{\pi y}) = \pi y/\sinh(\pi y)$.